TY - JOUR
T1 - MAPK signaling contributes to rotaviral-induced cholangiocyte injury and viral replication
AU - Jafri, Mubeen
AU - Donnelly, Bryan
AU - McNeal, Monica
AU - Ward, Richard
AU - Tiao, Greg
PY - 2007/8
Y1 - 2007/8
N2 - Background: Biliary atresia is a disease of newborns that results in obliteration of the biliary tree. Infection of mice with rhesus rotavirus (RRV) results in a cholangiopathy mirroring human disease. The Mitogen Associated Protein Kinase (MAPK) signaling pathway can be activated by viral binding to cell-surface receptors. We hypothesized that RRV infection of cholangiocytes results in activation of MAPK signaling. Methods: Extrahepatic bile ducts from BALB/c pups or immortalized cholangiocytes subjected to RRV infection or control were analyzed, using Western blots, for phosphorylated members of the MAPK family: p38, ERK 1/2, JNK 1/2, and downstream transcription factors. Inhibitors of the MAPK were used to downregulate activity. Viral replication and cytolysis in cholangiocytes were evaluated post-MAPK inhibition. Results: Phosphorylation of all MAPK increased in RRV-infected mice and cholangiocytes. Several downstream transcription factors had increased activity in vitro. Inhibition of p38 and ERK 1/2 resulted in decreased viral replication. ERK 1/2 inhibition decreased cytolysis without affecting viral entry or binding. Conclusions: RRV infection of cholangiocytes resulted in increased MAPK signaling. Inhibition of p38 and ERK 1/2 influenced the ability of rotavirus to replicate. These novel findings provide insight into the signaling cascade involved in RRV-induced cholangiocyte injury.
AB - Background: Biliary atresia is a disease of newborns that results in obliteration of the biliary tree. Infection of mice with rhesus rotavirus (RRV) results in a cholangiopathy mirroring human disease. The Mitogen Associated Protein Kinase (MAPK) signaling pathway can be activated by viral binding to cell-surface receptors. We hypothesized that RRV infection of cholangiocytes results in activation of MAPK signaling. Methods: Extrahepatic bile ducts from BALB/c pups or immortalized cholangiocytes subjected to RRV infection or control were analyzed, using Western blots, for phosphorylated members of the MAPK family: p38, ERK 1/2, JNK 1/2, and downstream transcription factors. Inhibitors of the MAPK were used to downregulate activity. Viral replication and cytolysis in cholangiocytes were evaluated post-MAPK inhibition. Results: Phosphorylation of all MAPK increased in RRV-infected mice and cholangiocytes. Several downstream transcription factors had increased activity in vitro. Inhibition of p38 and ERK 1/2 resulted in decreased viral replication. ERK 1/2 inhibition decreased cytolysis without affecting viral entry or binding. Conclusions: RRV infection of cholangiocytes resulted in increased MAPK signaling. Inhibition of p38 and ERK 1/2 influenced the ability of rotavirus to replicate. These novel findings provide insight into the signaling cascade involved in RRV-induced cholangiocyte injury.
UR - http://www.scopus.com/inward/record.url?scp=34547612538&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34547612538&partnerID=8YFLogxK
U2 - 10.1016/j.surg.2007.03.008
DO - 10.1016/j.surg.2007.03.008
M3 - Article
C2 - 17689685
AN - SCOPUS:34547612538
SN - 0039-6060
VL - 142
SP - 192
EP - 201
JO - Surgery (United States)
JF - Surgery (United States)
IS - 2
ER -