Manganese scavenging and oxidation at hydrothermal vents and in vent plumes

Kevin W. Mandernack, Bradley Tebo

Research output: Contribution to journalArticle

75 Citations (Scopus)

Abstract

Hydrothermal vents provide a major source of dissolved Mn(II) to the oceans, where concentrations range from 5 mM within the 350°C hot smokers to just above ambient seawater concentration in far field vent plumes. The Mn(II)-rich environments within warm vents and vent plumes provide a suitable habitat for Mn(II) oxidizing bacteria. In order to compare rates of scavenging and oxidation of Mn(II) proximally within vent fields (54Mn as a radiotracer were conducted in situ and on collected water samples from three hydrothermal vent locations: the Guaymas basin (GB), the Galapagos spreading center (GA), and the Endeavor Ridge of the Juan de Fuca spreading center (JDF). Both the adsorbed and oxidized fractions of the total 54Mn scavenged were determined and found to often be significant (as high as 65 and 74%, respectively). Manganese scavenging rates were generally higher in in situ incubations than in incubations conducted on board ship. Inhibition of 54Mn scavenging by sodium azide provided evidence for microbially mediated Mn(II) uptake and oxidation in waters both proximal (GA and GB) and distal to the vents (GA and JDF), even at distances as great as 17 km from the ridge axis at JDF. The highest manganese scavenging rates were observed within the vent fields (up to 2.5 nM/day). The residence times of dissolved Mn(II) were shorter in the GB and GA vent fields (26 and 28 days) than in the JDF vent field (1.4 years). This difference may be due to different mechanisms of Mn(II) precipitation in operation. At the GA vent field Mn(II) precipitation was often strongly inhibited by sodium azide and therefore apparently due to microbial activity. In contrast, Mn(II) scavenging within the JDF vent field was not significantly affected by sodium azide. Because 54Mn scavenging in the JDF vent field was dependent on the presence of oxygen and a much larger fraction of the total 54Mn scavenged was adsorbed than oxidized, manganese scavenging appears to occur primarily by an abiological mechanism, perhaps coprecipitation with iron oxyhydroxides. In comparison to the vent fields, Mn(II) scavenging rates were lower within the vent plumes (

Original languageEnglish (US)
Pages (from-to)3907-3923
Number of pages17
JournalGeochimica et Cosmochimica Acta
Volume57
Issue number16
DOIs
StatePublished - 1993
Externally publishedYes

Fingerprint

Vents
Scavenging
hydrothermal vent
Manganese
manganese
plume
oxidation
Oxidation
spreading center
sodium
incubation
basin
Sodium Azide
microbial activity
residence time
seawater
iron
water
oxygen
bacterium

ASJC Scopus subject areas

  • Geochemistry and Petrology

Cite this

Manganese scavenging and oxidation at hydrothermal vents and in vent plumes. / Mandernack, Kevin W.; Tebo, Bradley.

In: Geochimica et Cosmochimica Acta, Vol. 57, No. 16, 1993, p. 3907-3923.

Research output: Contribution to journalArticle

@article{3cec3602b5e24eaea5aa86466113fa5c,
title = "Manganese scavenging and oxidation at hydrothermal vents and in vent plumes",
abstract = "Hydrothermal vents provide a major source of dissolved Mn(II) to the oceans, where concentrations range from 5 mM within the 350°C hot smokers to just above ambient seawater concentration in far field vent plumes. The Mn(II)-rich environments within warm vents and vent plumes provide a suitable habitat for Mn(II) oxidizing bacteria. In order to compare rates of scavenging and oxidation of Mn(II) proximally within vent fields (54Mn as a radiotracer were conducted in situ and on collected water samples from three hydrothermal vent locations: the Guaymas basin (GB), the Galapagos spreading center (GA), and the Endeavor Ridge of the Juan de Fuca spreading center (JDF). Both the adsorbed and oxidized fractions of the total 54Mn scavenged were determined and found to often be significant (as high as 65 and 74{\%}, respectively). Manganese scavenging rates were generally higher in in situ incubations than in incubations conducted on board ship. Inhibition of 54Mn scavenging by sodium azide provided evidence for microbially mediated Mn(II) uptake and oxidation in waters both proximal (GA and GB) and distal to the vents (GA and JDF), even at distances as great as 17 km from the ridge axis at JDF. The highest manganese scavenging rates were observed within the vent fields (up to 2.5 nM/day). The residence times of dissolved Mn(II) were shorter in the GB and GA vent fields (26 and 28 days) than in the JDF vent field (1.4 years). This difference may be due to different mechanisms of Mn(II) precipitation in operation. At the GA vent field Mn(II) precipitation was often strongly inhibited by sodium azide and therefore apparently due to microbial activity. In contrast, Mn(II) scavenging within the JDF vent field was not significantly affected by sodium azide. Because 54Mn scavenging in the JDF vent field was dependent on the presence of oxygen and a much larger fraction of the total 54Mn scavenged was adsorbed than oxidized, manganese scavenging appears to occur primarily by an abiological mechanism, perhaps coprecipitation with iron oxyhydroxides. In comparison to the vent fields, Mn(II) scavenging rates were lower within the vent plumes (",
author = "Mandernack, {Kevin W.} and Bradley Tebo",
year = "1993",
doi = "10.1016/0016-7037(93)90343-U",
language = "English (US)",
volume = "57",
pages = "3907--3923",
journal = "Geochmica et Cosmochimica Acta",
issn = "0016-7037",
publisher = "Elsevier Limited",
number = "16",

}

TY - JOUR

T1 - Manganese scavenging and oxidation at hydrothermal vents and in vent plumes

AU - Mandernack, Kevin W.

AU - Tebo, Bradley

PY - 1993

Y1 - 1993

N2 - Hydrothermal vents provide a major source of dissolved Mn(II) to the oceans, where concentrations range from 5 mM within the 350°C hot smokers to just above ambient seawater concentration in far field vent plumes. The Mn(II)-rich environments within warm vents and vent plumes provide a suitable habitat for Mn(II) oxidizing bacteria. In order to compare rates of scavenging and oxidation of Mn(II) proximally within vent fields (54Mn as a radiotracer were conducted in situ and on collected water samples from three hydrothermal vent locations: the Guaymas basin (GB), the Galapagos spreading center (GA), and the Endeavor Ridge of the Juan de Fuca spreading center (JDF). Both the adsorbed and oxidized fractions of the total 54Mn scavenged were determined and found to often be significant (as high as 65 and 74%, respectively). Manganese scavenging rates were generally higher in in situ incubations than in incubations conducted on board ship. Inhibition of 54Mn scavenging by sodium azide provided evidence for microbially mediated Mn(II) uptake and oxidation in waters both proximal (GA and GB) and distal to the vents (GA and JDF), even at distances as great as 17 km from the ridge axis at JDF. The highest manganese scavenging rates were observed within the vent fields (up to 2.5 nM/day). The residence times of dissolved Mn(II) were shorter in the GB and GA vent fields (26 and 28 days) than in the JDF vent field (1.4 years). This difference may be due to different mechanisms of Mn(II) precipitation in operation. At the GA vent field Mn(II) precipitation was often strongly inhibited by sodium azide and therefore apparently due to microbial activity. In contrast, Mn(II) scavenging within the JDF vent field was not significantly affected by sodium azide. Because 54Mn scavenging in the JDF vent field was dependent on the presence of oxygen and a much larger fraction of the total 54Mn scavenged was adsorbed than oxidized, manganese scavenging appears to occur primarily by an abiological mechanism, perhaps coprecipitation with iron oxyhydroxides. In comparison to the vent fields, Mn(II) scavenging rates were lower within the vent plumes (

AB - Hydrothermal vents provide a major source of dissolved Mn(II) to the oceans, where concentrations range from 5 mM within the 350°C hot smokers to just above ambient seawater concentration in far field vent plumes. The Mn(II)-rich environments within warm vents and vent plumes provide a suitable habitat for Mn(II) oxidizing bacteria. In order to compare rates of scavenging and oxidation of Mn(II) proximally within vent fields (54Mn as a radiotracer were conducted in situ and on collected water samples from three hydrothermal vent locations: the Guaymas basin (GB), the Galapagos spreading center (GA), and the Endeavor Ridge of the Juan de Fuca spreading center (JDF). Both the adsorbed and oxidized fractions of the total 54Mn scavenged were determined and found to often be significant (as high as 65 and 74%, respectively). Manganese scavenging rates were generally higher in in situ incubations than in incubations conducted on board ship. Inhibition of 54Mn scavenging by sodium azide provided evidence for microbially mediated Mn(II) uptake and oxidation in waters both proximal (GA and GB) and distal to the vents (GA and JDF), even at distances as great as 17 km from the ridge axis at JDF. The highest manganese scavenging rates were observed within the vent fields (up to 2.5 nM/day). The residence times of dissolved Mn(II) were shorter in the GB and GA vent fields (26 and 28 days) than in the JDF vent field (1.4 years). This difference may be due to different mechanisms of Mn(II) precipitation in operation. At the GA vent field Mn(II) precipitation was often strongly inhibited by sodium azide and therefore apparently due to microbial activity. In contrast, Mn(II) scavenging within the JDF vent field was not significantly affected by sodium azide. Because 54Mn scavenging in the JDF vent field was dependent on the presence of oxygen and a much larger fraction of the total 54Mn scavenged was adsorbed than oxidized, manganese scavenging appears to occur primarily by an abiological mechanism, perhaps coprecipitation with iron oxyhydroxides. In comparison to the vent fields, Mn(II) scavenging rates were lower within the vent plumes (

UR - http://www.scopus.com/inward/record.url?scp=0027866311&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0027866311&partnerID=8YFLogxK

U2 - 10.1016/0016-7037(93)90343-U

DO - 10.1016/0016-7037(93)90343-U

M3 - Article

AN - SCOPUS:0027866311

VL - 57

SP - 3907

EP - 3923

JO - Geochmica et Cosmochimica Acta

JF - Geochmica et Cosmochimica Acta

SN - 0016-7037

IS - 16

ER -