TY - JOUR
T1 - Lysophosphatidic acid production and action
T2 - Validated targets in cancer?
AU - Umezu-Goto, Makiko
AU - Tanyi, Janos
AU - Lahad, John
AU - Liu, Shuying
AU - Yu, Shuangxing
AU - Lapushin, Ruth
AU - Hasegawa, Yutaka
AU - Lu, Yiling
AU - Trost, Rosanne
AU - Bevers, Therese
AU - Jonasch, Eric
AU - Aldape, Ken
AU - Liu, Jinsong
AU - James, Robyn D.
AU - Ferguson, Colin G.
AU - Xu, Yong
AU - Prestwich, Glenn D.
AU - Mills, Gordon B.
PY - 2004
Y1 - 2004
N2 - The completion of the human genome project, the evolution of transcriptional profiling and the emergence of proteomics have focused attention on these areas in the pathophysiology and therapy of cancer. The role of lysophospholipids as potential mediators in cancer pathophysiology, screening and management has taken a major leap forward with the recent cloning of several enzymes involved in the metabolism of lysophospholipids. Lysophospholipids, although small molecules, contain a high "informational" content. Differences include the nature of the phosphate head group, the regiochemistry of the fatty acyl chain on the glyceryl backbone, the presence of ether versus ester linkages to the backbone, and the length and saturation of the fatty acyl or alkyl chain. This informational content is sufficient to result in a marked structure function activity relationship at their cognate receptors. Thus the emerging discipline of "functional lipidomics" is likely to prove as important as genomics and proteomics in terms of early diagnosis, prognosis, and therapy. Lysophospholipid levels are elevated in vivo in a number of pathophysiological states including ascitic fluid from ovarian cancer patients indicating a role in the pathophysiology of this devastating disease. Although controversial, levels of specific lysophospholipids may be altered in the blood of cancer patients providing a potential mechanism for early diagnosis. Several of the enzymes involved in the metabolism of lysophospholipids are aberrant in ovarian and other cancers. Further, the enzymes are active in the interstitial space, rendering them readily accessible to the effects of inhibitors including antibodies, proteins, and small molecules. In support of a role for lysophospholipids in the pathophysiology of cancer, expression of receptors for lysophospholipids is also aberrant in cancer cells from multiple different lineages. All of the cell surface receptors for lysophospholipids belong to the G protein coupled receptor family. As over 40% of all drugs in current use target this family of receptors, lysophospholipid receptors are highly "druggable." Indeed, a number of highly specific agonists and antagonists of lysophospholipid receptors have been identified. A number are in preclinical evaluation as therapeutics. We look forward to the next several years when the role of lysophospholipids in physiology and the pathophysiology and management of cancer and other diseases are fully elucidated.
AB - The completion of the human genome project, the evolution of transcriptional profiling and the emergence of proteomics have focused attention on these areas in the pathophysiology and therapy of cancer. The role of lysophospholipids as potential mediators in cancer pathophysiology, screening and management has taken a major leap forward with the recent cloning of several enzymes involved in the metabolism of lysophospholipids. Lysophospholipids, although small molecules, contain a high "informational" content. Differences include the nature of the phosphate head group, the regiochemistry of the fatty acyl chain on the glyceryl backbone, the presence of ether versus ester linkages to the backbone, and the length and saturation of the fatty acyl or alkyl chain. This informational content is sufficient to result in a marked structure function activity relationship at their cognate receptors. Thus the emerging discipline of "functional lipidomics" is likely to prove as important as genomics and proteomics in terms of early diagnosis, prognosis, and therapy. Lysophospholipid levels are elevated in vivo in a number of pathophysiological states including ascitic fluid from ovarian cancer patients indicating a role in the pathophysiology of this devastating disease. Although controversial, levels of specific lysophospholipids may be altered in the blood of cancer patients providing a potential mechanism for early diagnosis. Several of the enzymes involved in the metabolism of lysophospholipids are aberrant in ovarian and other cancers. Further, the enzymes are active in the interstitial space, rendering them readily accessible to the effects of inhibitors including antibodies, proteins, and small molecules. In support of a role for lysophospholipids in the pathophysiology of cancer, expression of receptors for lysophospholipids is also aberrant in cancer cells from multiple different lineages. All of the cell surface receptors for lysophospholipids belong to the G protein coupled receptor family. As over 40% of all drugs in current use target this family of receptors, lysophospholipid receptors are highly "druggable." Indeed, a number of highly specific agonists and antagonists of lysophospholipid receptors have been identified. A number are in preclinical evaluation as therapeutics. We look forward to the next several years when the role of lysophospholipids in physiology and the pathophysiology and management of cancer and other diseases are fully elucidated.
KW - Autotaxin
KW - Cancer
KW - Lysophosphatidic acid
KW - Treatment
UR - http://www.scopus.com/inward/record.url?scp=5344266925&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=5344266925&partnerID=8YFLogxK
U2 - 10.1002/jcb.20113
DO - 10.1002/jcb.20113
M3 - Article
C2 - 15258897
AN - SCOPUS:5344266925
SN - 0730-2312
VL - 92
SP - 1115
EP - 1140
JO - Journal of supramolecular structure and cellular biochemistry
JF - Journal of supramolecular structure and cellular biochemistry
IS - 6
ER -