Loss of Mecp2 in substantia nigra dopamine neurons compromises the nigrostriatal pathway

Stephanie C. Gantz, Christopher P. Ford, Kim Neve, John Williams

Research output: Contribution to journalArticle

32 Scopus citations

Abstract

Mutations in the methyl-CpG-binding protein 2 (MeCP2) result in Rett syndrome (RTT), an X-linked disorder that disrupts neurodevelopment. Girls withRTTexhibit motor deficits similar to those in Parkinson's disease, suggesting defects in the nigrostriatal pathway. This study examined age-dependent changes in dopamine neurons of the substantia nigra (SN) from wild-type, presymptomatic, and symptomatic Mecp2+/- mice. Mecp2+ neurons in the SN in Mecp2+/- mice were indistinguishable in morphology, resting conductance, and dopamine current density from neurons in wild-type mice. However, the capacitance, total dendritic length, and resting conductance of Mecp2- neurons were less than those of Mecp2+ neurons as early as 4 weeks after birth, before overt symptoms. These differences were maintained throughout life. In symptomatic Mecp2+/- mice, the current induced by activation of D2 dopamine autoreceptors was significantly less in Mecp2- neurons than in Mecp2+ neurons, although D2 receptor density was unaltered in Mecp2+/- mice. Electrochemical measurements revealed that significantly less dopamine was released after stimulation of striatum in adult Mecp2+/- mice compared to wild type. The decrease in size and function of Mecp2- neurons observed in adult Mecp2+/- mice was recapitulated in dopamine neurons from symptomatic Mecp2-/y males. These results show that mutation in Mecp2 results in cell-autonomous defects in the SN early in life and throughout adulthood. Ultimately, dysfunction in terminal dopamine release and D2 autoreceptor-dependent currents in dopamine neurons from symptomatic females support the idea that decreased dopamine transmission due to heterogeneous Mecp2 expression contributes to the parkinsonian features of RTT in Mecp2+/- mice.

Original languageEnglish (US)
Pages (from-to)12629-12637
Number of pages9
JournalJournal of Neuroscience
Volume31
Issue number35
DOIs
Publication statusPublished - Aug 31 2011

    Fingerprint

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this