Loss-of-function mutations in yjbD result in ClpX- and ClpP-independent competence development of Bacillus subtilis

Michiko Nakano, F. Hajarizadeh, Y. Zhu, Peter Zuber

Research output: Contribution to journalArticle

69 Citations (Scopus)

Abstract

Mutations in clpP and clpX have pleiotropic effects on growth and developmentally regulated gene expression in Bacillus subtilis. ClpP and ClpX are needed for expression of comK, encoding the competence transcription factor required for the expression of genes within the competence regulon. ClpP, in combination with the ATPase ClpC, degrades the inhibitor of ComK, MecA. Proteolysis of MecA is stimulated by a small protein, ComS, which interacts with MecA. Suppressor mutations (cxs) were isolated that bypass the requirement for clpX for comK expression. These were found also to overcome the defect in comK expression conferred by a clpP mutation. These mutations were identified as missense mutations (cxs-5, -7 and -12) and a nonsense (UAG) codon substitution (cxs-10) in the yjbD coding sequence in a locus linked to mecA. That a yjbD disruption confers the cxs phenotype, together with its complementation by an ectopically expressed copy of yjbD, indicated that the suppressor alleles bear recessive, loss-of-function mutations of yjbD. ClpP- and ClpX-independent comK expression rendered by inactivation of yjbD was still medium-dependent and required ComS. MecA levels in a clpP-yjbD mutant were lower that those of clpP mutant cells and ComK protein concentration in the clpP mutant was restored to wild-type levels by the yjbD mutation. Consequently, the yjbD mutation bypasses the defect in competence development conferred by clpP and clpX. YjbD protein is barely detectable in wild-type cells, but is present in large amounts in the clpP mutant cells. The results suggest that the role of ClpP in competence development is to degrade YjbD protein so that ComS can productively interact with the MecA-ClpC-ComK complex. Alternatively, the result could suggest that YjbD has a negative effect on regulated proteolysis and that MecA is degraded independently of ClpP when YjbD is absent.

Original languageEnglish (US)
Pages (from-to)383-394
Number of pages12
JournalMolecular Microbiology
Volume42
Issue number2
DOIs
StatePublished - 2001

Fingerprint

Bacillus subtilis
Mental Competency
Mutation
Proteolysis
Proteins
Genetic Suppression
Gene Expression
Regulon
Terminator Codon
Nonsense Codon
Missense Mutation
Adenosine Triphosphatases
Transcription Factors
Alleles
Phenotype
Growth

ASJC Scopus subject areas

  • Molecular Biology
  • Microbiology

Cite this

Loss-of-function mutations in yjbD result in ClpX- and ClpP-independent competence development of Bacillus subtilis. / Nakano, Michiko; Hajarizadeh, F.; Zhu, Y.; Zuber, Peter.

In: Molecular Microbiology, Vol. 42, No. 2, 2001, p. 383-394.

Research output: Contribution to journalArticle

@article{51af2bede21f4d94aba8e262f409dd70,
title = "Loss-of-function mutations in yjbD result in ClpX- and ClpP-independent competence development of Bacillus subtilis",
abstract = "Mutations in clpP and clpX have pleiotropic effects on growth and developmentally regulated gene expression in Bacillus subtilis. ClpP and ClpX are needed for expression of comK, encoding the competence transcription factor required for the expression of genes within the competence regulon. ClpP, in combination with the ATPase ClpC, degrades the inhibitor of ComK, MecA. Proteolysis of MecA is stimulated by a small protein, ComS, which interacts with MecA. Suppressor mutations (cxs) were isolated that bypass the requirement for clpX for comK expression. These were found also to overcome the defect in comK expression conferred by a clpP mutation. These mutations were identified as missense mutations (cxs-5, -7 and -12) and a nonsense (UAG) codon substitution (cxs-10) in the yjbD coding sequence in a locus linked to mecA. That a yjbD disruption confers the cxs phenotype, together with its complementation by an ectopically expressed copy of yjbD, indicated that the suppressor alleles bear recessive, loss-of-function mutations of yjbD. ClpP- and ClpX-independent comK expression rendered by inactivation of yjbD was still medium-dependent and required ComS. MecA levels in a clpP-yjbD mutant were lower that those of clpP mutant cells and ComK protein concentration in the clpP mutant was restored to wild-type levels by the yjbD mutation. Consequently, the yjbD mutation bypasses the defect in competence development conferred by clpP and clpX. YjbD protein is barely detectable in wild-type cells, but is present in large amounts in the clpP mutant cells. The results suggest that the role of ClpP in competence development is to degrade YjbD protein so that ComS can productively interact with the MecA-ClpC-ComK complex. Alternatively, the result could suggest that YjbD has a negative effect on regulated proteolysis and that MecA is degraded independently of ClpP when YjbD is absent.",
author = "Michiko Nakano and F. Hajarizadeh and Y. Zhu and Peter Zuber",
year = "2001",
doi = "10.1046/j.1365-2958.2001.02639.x",
language = "English (US)",
volume = "42",
pages = "383--394",
journal = "Molecular Microbiology",
issn = "0950-382X",
publisher = "Wiley-Blackwell",
number = "2",

}

TY - JOUR

T1 - Loss-of-function mutations in yjbD result in ClpX- and ClpP-independent competence development of Bacillus subtilis

AU - Nakano, Michiko

AU - Hajarizadeh, F.

AU - Zhu, Y.

AU - Zuber, Peter

PY - 2001

Y1 - 2001

N2 - Mutations in clpP and clpX have pleiotropic effects on growth and developmentally regulated gene expression in Bacillus subtilis. ClpP and ClpX are needed for expression of comK, encoding the competence transcription factor required for the expression of genes within the competence regulon. ClpP, in combination with the ATPase ClpC, degrades the inhibitor of ComK, MecA. Proteolysis of MecA is stimulated by a small protein, ComS, which interacts with MecA. Suppressor mutations (cxs) were isolated that bypass the requirement for clpX for comK expression. These were found also to overcome the defect in comK expression conferred by a clpP mutation. These mutations were identified as missense mutations (cxs-5, -7 and -12) and a nonsense (UAG) codon substitution (cxs-10) in the yjbD coding sequence in a locus linked to mecA. That a yjbD disruption confers the cxs phenotype, together with its complementation by an ectopically expressed copy of yjbD, indicated that the suppressor alleles bear recessive, loss-of-function mutations of yjbD. ClpP- and ClpX-independent comK expression rendered by inactivation of yjbD was still medium-dependent and required ComS. MecA levels in a clpP-yjbD mutant were lower that those of clpP mutant cells and ComK protein concentration in the clpP mutant was restored to wild-type levels by the yjbD mutation. Consequently, the yjbD mutation bypasses the defect in competence development conferred by clpP and clpX. YjbD protein is barely detectable in wild-type cells, but is present in large amounts in the clpP mutant cells. The results suggest that the role of ClpP in competence development is to degrade YjbD protein so that ComS can productively interact with the MecA-ClpC-ComK complex. Alternatively, the result could suggest that YjbD has a negative effect on regulated proteolysis and that MecA is degraded independently of ClpP when YjbD is absent.

AB - Mutations in clpP and clpX have pleiotropic effects on growth and developmentally regulated gene expression in Bacillus subtilis. ClpP and ClpX are needed for expression of comK, encoding the competence transcription factor required for the expression of genes within the competence regulon. ClpP, in combination with the ATPase ClpC, degrades the inhibitor of ComK, MecA. Proteolysis of MecA is stimulated by a small protein, ComS, which interacts with MecA. Suppressor mutations (cxs) were isolated that bypass the requirement for clpX for comK expression. These were found also to overcome the defect in comK expression conferred by a clpP mutation. These mutations were identified as missense mutations (cxs-5, -7 and -12) and a nonsense (UAG) codon substitution (cxs-10) in the yjbD coding sequence in a locus linked to mecA. That a yjbD disruption confers the cxs phenotype, together with its complementation by an ectopically expressed copy of yjbD, indicated that the suppressor alleles bear recessive, loss-of-function mutations of yjbD. ClpP- and ClpX-independent comK expression rendered by inactivation of yjbD was still medium-dependent and required ComS. MecA levels in a clpP-yjbD mutant were lower that those of clpP mutant cells and ComK protein concentration in the clpP mutant was restored to wild-type levels by the yjbD mutation. Consequently, the yjbD mutation bypasses the defect in competence development conferred by clpP and clpX. YjbD protein is barely detectable in wild-type cells, but is present in large amounts in the clpP mutant cells. The results suggest that the role of ClpP in competence development is to degrade YjbD protein so that ComS can productively interact with the MecA-ClpC-ComK complex. Alternatively, the result could suggest that YjbD has a negative effect on regulated proteolysis and that MecA is degraded independently of ClpP when YjbD is absent.

UR - http://www.scopus.com/inward/record.url?scp=0034757626&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0034757626&partnerID=8YFLogxK

U2 - 10.1046/j.1365-2958.2001.02639.x

DO - 10.1046/j.1365-2958.2001.02639.x

M3 - Article

C2 - 11703662

AN - SCOPUS:0034757626

VL - 42

SP - 383

EP - 394

JO - Molecular Microbiology

JF - Molecular Microbiology

SN - 0950-382X

IS - 2

ER -