TY - JOUR
T1 - Long-term comparative effectiveness of pegvaliase versus standard of care comparators in adults with phenylketonuria
AU - Zori, Roberto
AU - Ahring, Kirsten
AU - Burton, Barbara
AU - Pastores, Gregory M.
AU - Rutsch, Frank
AU - Jha, Ashok
AU - Jurecki, Elaina
AU - Rowell, Richard
AU - Harding, Cary
N1 - Funding Information:
The content of this manuscript was based on discussions during a face-to-face meeting and a virtual advisory board that were coordinated and funded by BioMarin Pharmaceutical Inc. All authors or their institutions received funding to participate in the discussions. In addition, F Rutsch received consulting fees and grant support from BioMarin. B Burton received speakers fees, consulting fees, and funding for clinical trials from BioMarin. A Jha, E Jurecki, and R Rowell are employees of BioMarin. CO Harding has received payments for consultancy, lectures/honoraria, clinical trials support, preclinical research support, and travel/accommodations/meeting expenses from BioMarin.The authors are grateful to Ismar Healthcare NV who provided medical writing assistance, which was funded by BioMarin Pharmaceutical Inc. We acknowledge Dr. Francjan van Spronsen for his contribution to the face-to-face meeting and virtual advisory board. This work was supported by BioMarin Pharmaceutical Inc.
Publisher Copyright:
© 2019 The Authors
PY - 2019/9/1
Y1 - 2019/9/1
N2 - Phenylketonuria (PKU) is caused by phenylalanine hydroxylase (PAH) deficiency, resulting in high blood and brain Phenylalanine (Phe) concentrations that can lead to impaired brain development and function. Standard treatment involves a Phe-restricted diet alone or in conjunction with sapropterin dihydrochloride in responsive patients. The Food and Drug Administration approved pegvaliase enzyme substitution therapy for adults with blood Phe >600 μmol/L in the US. Recently, the European Commission also approved pegvaliase for treatment of PKU patients aged 16 years or older with blood Phe >600 μmol/L. The analyses presented below were conducted to provide comparative evidence on long-term treatment effectiveness of pegvaliase versus standard of care in adults with PKU. Adult patients (≥18 years) with baseline blood Phe >600 μmol/L who had enrolled in the pegvaliase phase 2 and phase 3 clinical trials were propensity score-matched to historical cohorts of patients treated with “sapropterin + diet” or with “diet alone”. These cohorts were derived from the PKU Demographics, Outcome and Safety (PKUDOS) registry and compared for clinical outcomes including blood Phe concentration and natural intact protein intake after 1 and 2 years. Propensity scores were estimated using logistic regression with probability of treatment as outcome (i.e. pegvaliase, “sapropterin + diet”, or “diet alone”) and patient demographic and disease severity covariates as predictors. An additional analysis in adult PKU patients with baseline blood Phe ≤600 μmol/L comparing non-matched patient groups “sapropterin + diet” to “diet alone” using PKUDOS registry data only was also conducted. The analyses in patients with baseline blood Phe >600 μmol comparing pegvaliase with “sapropterin + diet” (N = 64 matched pairs) showed lower mean blood Phe concentrations after 1 and 2 years with pegvaliase (505 and 427 μmol/L) versus “sapropterin + diet” (807 and 891 μmol/L); mean natural intact protein intake after 1 and 2 years was 49 and 57 g/day respectively with pegvaliase versus 23 and 28 g/day with “sapropterin + diet”. The analysis comparing pegvaliase with “diet alone” (N = 120 matched pairs) showed lower mean blood Phe at 1 and 2 years with pegvaliase (473 and 302 μmol/L) versus “diet alone” (1022 and 965 μmol/L); mean natural intact protein intake after 1 and 2 years was 47 and 57 g/day with pegvaliase and 27 and 22 g/day with “diet alone”. Considerably more patients achieved blood Phe ≤600, ≤360, and ≤120 μmol/L and reductions from baseline of ≥20%, ≥30%, and ≥50% in blood Phe after 1 and 2 years of pegvaliase versus standard treatments. The analysis in patients with baseline blood Phe ≤600 μmol/L showed lower blood Phe after 1 and 2 years with “sapropterin + diet” (240 and 324 μmol/L) versus “diet alone” (580 and 549 μmol/L) and greater percentages of patients achieving blood Phe targets ≤600, ≤360, and ≤120 μmol/L and reductions from baseline of ≥20%, ≥30%, and ≥50% in blood Phe. These results support pegvaliase as the more effective treatment option to lower Phe levels in adults with PKU who have difficulty keeping blood Phe ≤600 μmol/L with “diet alone”. For patients with blood Phe ≤600 μmol/L, adding sapropterin to dietary management is an appropriate treatment option, for those responsive to the treatment.
AB - Phenylketonuria (PKU) is caused by phenylalanine hydroxylase (PAH) deficiency, resulting in high blood and brain Phenylalanine (Phe) concentrations that can lead to impaired brain development and function. Standard treatment involves a Phe-restricted diet alone or in conjunction with sapropterin dihydrochloride in responsive patients. The Food and Drug Administration approved pegvaliase enzyme substitution therapy for adults with blood Phe >600 μmol/L in the US. Recently, the European Commission also approved pegvaliase for treatment of PKU patients aged 16 years or older with blood Phe >600 μmol/L. The analyses presented below were conducted to provide comparative evidence on long-term treatment effectiveness of pegvaliase versus standard of care in adults with PKU. Adult patients (≥18 years) with baseline blood Phe >600 μmol/L who had enrolled in the pegvaliase phase 2 and phase 3 clinical trials were propensity score-matched to historical cohorts of patients treated with “sapropterin + diet” or with “diet alone”. These cohorts were derived from the PKU Demographics, Outcome and Safety (PKUDOS) registry and compared for clinical outcomes including blood Phe concentration and natural intact protein intake after 1 and 2 years. Propensity scores were estimated using logistic regression with probability of treatment as outcome (i.e. pegvaliase, “sapropterin + diet”, or “diet alone”) and patient demographic and disease severity covariates as predictors. An additional analysis in adult PKU patients with baseline blood Phe ≤600 μmol/L comparing non-matched patient groups “sapropterin + diet” to “diet alone” using PKUDOS registry data only was also conducted. The analyses in patients with baseline blood Phe >600 μmol comparing pegvaliase with “sapropterin + diet” (N = 64 matched pairs) showed lower mean blood Phe concentrations after 1 and 2 years with pegvaliase (505 and 427 μmol/L) versus “sapropterin + diet” (807 and 891 μmol/L); mean natural intact protein intake after 1 and 2 years was 49 and 57 g/day respectively with pegvaliase versus 23 and 28 g/day with “sapropterin + diet”. The analysis comparing pegvaliase with “diet alone” (N = 120 matched pairs) showed lower mean blood Phe at 1 and 2 years with pegvaliase (473 and 302 μmol/L) versus “diet alone” (1022 and 965 μmol/L); mean natural intact protein intake after 1 and 2 years was 47 and 57 g/day with pegvaliase and 27 and 22 g/day with “diet alone”. Considerably more patients achieved blood Phe ≤600, ≤360, and ≤120 μmol/L and reductions from baseline of ≥20%, ≥30%, and ≥50% in blood Phe after 1 and 2 years of pegvaliase versus standard treatments. The analysis in patients with baseline blood Phe ≤600 μmol/L showed lower blood Phe after 1 and 2 years with “sapropterin + diet” (240 and 324 μmol/L) versus “diet alone” (580 and 549 μmol/L) and greater percentages of patients achieving blood Phe targets ≤600, ≤360, and ≤120 μmol/L and reductions from baseline of ≥20%, ≥30%, and ≥50% in blood Phe. These results support pegvaliase as the more effective treatment option to lower Phe levels in adults with PKU who have difficulty keeping blood Phe ≤600 μmol/L with “diet alone”. For patients with blood Phe ≤600 μmol/L, adding sapropterin to dietary management is an appropriate treatment option, for those responsive to the treatment.
KW - Diet
KW - Pegvaliase
KW - Phenylalanine
KW - Phenylketonuria
KW - Propensity score matching
KW - Sapropterin dihydrochloride
UR - http://www.scopus.com/inward/record.url?scp=85070747657&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85070747657&partnerID=8YFLogxK
U2 - 10.1016/j.ymgme.2019.07.018
DO - 10.1016/j.ymgme.2019.07.018
M3 - Article
C2 - 31439512
AN - SCOPUS:85070747657
SN - 1096-7192
VL - 128
SP - 92
EP - 101
JO - Biochemical Medicine and Metabolic Biology
JF - Biochemical Medicine and Metabolic Biology
IS - 1-2
ER -