Leukemogenic membrane glycoprotein encoded by Friend spleen focus-forming virus: Transport to cell surfaces and shedding are controlled by disulfide-bonded dimerization and by cleavage of a hydrophobic membrane anchor

B. C. Gliniak, David Kabat

Research output: Contribution to journalArticle

33 Citations (Scopus)

Abstract

The leukemogenic glycoprotein (gp55) encoded by Friend spleen focus-forming virus is predominantly retained in the rough endoplasmic reticulum (RER). However, a small proportion (ca. 5%) is processed to form a derivative that occurs on plasma membranes and causes mitosis of infected erythroblasts. We have now found that gp55 folds heterogeneously in the RER to form components with different disulfide bonds and that this difference may determine their processing fates. RER gp55 consists predominantly of monomers with intrachain disulfide bonds. In contrast, the processed molecules are disulfide-bonded dimers. These dimers are extensively modified in transit to cell surfaces by conversion of four N-linked high-mannose oligosaccharides to complex derivatives and by attachment of a sialylated O-linked oligosaccharide. The plasma membrane dimers are then slowly shed into the medium by a mechanism that involves proteolytic cleavage of approximately 25 membrane-anchoring hydrophobic amino acids from the carboxyl termini of the glycoproteins. Consequently, shed molecules have shorter polypeptide chains than cell-associated gp55. We conclude that gp55 folds into different disulfide-bonded components that do not substantially isomerize, and that only one specific dimer is competent for export from the RER. Mitogenic activity of gp55 could be caused by the cell surface dimers, by the shed derivative, or by the carboxyl-terminal hydrophobic anchors that remain in the membranes after the shedding reaction.

Original languageEnglish (US)
Pages (from-to)3561-3568
Number of pages8
JournalJournal of Virology
Volume63
Issue number9
StatePublished - 1989

Fingerprint

Spleen Focus-Forming Viruses
membrane glycoproteins
dimerization
Rough Endoplasmic Reticulum
rough endoplasmic reticulum
Membrane Glycoproteins
Dimerization
sulfides
Disulfides
spleen
viruses
Membranes
chemical derivatives
sheds
disulfide bonds
Oligosaccharides
oligosaccharides
glycoproteins
plasma membrane
Cell Membrane

ASJC Scopus subject areas

  • Immunology

Cite this

@article{14f0b34bec3843b28155526b8ec74ad8,
title = "Leukemogenic membrane glycoprotein encoded by Friend spleen focus-forming virus: Transport to cell surfaces and shedding are controlled by disulfide-bonded dimerization and by cleavage of a hydrophobic membrane anchor",
abstract = "The leukemogenic glycoprotein (gp55) encoded by Friend spleen focus-forming virus is predominantly retained in the rough endoplasmic reticulum (RER). However, a small proportion (ca. 5{\%}) is processed to form a derivative that occurs on plasma membranes and causes mitosis of infected erythroblasts. We have now found that gp55 folds heterogeneously in the RER to form components with different disulfide bonds and that this difference may determine their processing fates. RER gp55 consists predominantly of monomers with intrachain disulfide bonds. In contrast, the processed molecules are disulfide-bonded dimers. These dimers are extensively modified in transit to cell surfaces by conversion of four N-linked high-mannose oligosaccharides to complex derivatives and by attachment of a sialylated O-linked oligosaccharide. The plasma membrane dimers are then slowly shed into the medium by a mechanism that involves proteolytic cleavage of approximately 25 membrane-anchoring hydrophobic amino acids from the carboxyl termini of the glycoproteins. Consequently, shed molecules have shorter polypeptide chains than cell-associated gp55. We conclude that gp55 folds into different disulfide-bonded components that do not substantially isomerize, and that only one specific dimer is competent for export from the RER. Mitogenic activity of gp55 could be caused by the cell surface dimers, by the shed derivative, or by the carboxyl-terminal hydrophobic anchors that remain in the membranes after the shedding reaction.",
author = "Gliniak, {B. C.} and David Kabat",
year = "1989",
language = "English (US)",
volume = "63",
pages = "3561--3568",
journal = "Journal of Virology",
issn = "0022-538X",
publisher = "American Society for Microbiology",
number = "9",

}

TY - JOUR

T1 - Leukemogenic membrane glycoprotein encoded by Friend spleen focus-forming virus

T2 - Transport to cell surfaces and shedding are controlled by disulfide-bonded dimerization and by cleavage of a hydrophobic membrane anchor

AU - Gliniak, B. C.

AU - Kabat, David

PY - 1989

Y1 - 1989

N2 - The leukemogenic glycoprotein (gp55) encoded by Friend spleen focus-forming virus is predominantly retained in the rough endoplasmic reticulum (RER). However, a small proportion (ca. 5%) is processed to form a derivative that occurs on plasma membranes and causes mitosis of infected erythroblasts. We have now found that gp55 folds heterogeneously in the RER to form components with different disulfide bonds and that this difference may determine their processing fates. RER gp55 consists predominantly of monomers with intrachain disulfide bonds. In contrast, the processed molecules are disulfide-bonded dimers. These dimers are extensively modified in transit to cell surfaces by conversion of four N-linked high-mannose oligosaccharides to complex derivatives and by attachment of a sialylated O-linked oligosaccharide. The plasma membrane dimers are then slowly shed into the medium by a mechanism that involves proteolytic cleavage of approximately 25 membrane-anchoring hydrophobic amino acids from the carboxyl termini of the glycoproteins. Consequently, shed molecules have shorter polypeptide chains than cell-associated gp55. We conclude that gp55 folds into different disulfide-bonded components that do not substantially isomerize, and that only one specific dimer is competent for export from the RER. Mitogenic activity of gp55 could be caused by the cell surface dimers, by the shed derivative, or by the carboxyl-terminal hydrophobic anchors that remain in the membranes after the shedding reaction.

AB - The leukemogenic glycoprotein (gp55) encoded by Friend spleen focus-forming virus is predominantly retained in the rough endoplasmic reticulum (RER). However, a small proportion (ca. 5%) is processed to form a derivative that occurs on plasma membranes and causes mitosis of infected erythroblasts. We have now found that gp55 folds heterogeneously in the RER to form components with different disulfide bonds and that this difference may determine their processing fates. RER gp55 consists predominantly of monomers with intrachain disulfide bonds. In contrast, the processed molecules are disulfide-bonded dimers. These dimers are extensively modified in transit to cell surfaces by conversion of four N-linked high-mannose oligosaccharides to complex derivatives and by attachment of a sialylated O-linked oligosaccharide. The plasma membrane dimers are then slowly shed into the medium by a mechanism that involves proteolytic cleavage of approximately 25 membrane-anchoring hydrophobic amino acids from the carboxyl termini of the glycoproteins. Consequently, shed molecules have shorter polypeptide chains than cell-associated gp55. We conclude that gp55 folds into different disulfide-bonded components that do not substantially isomerize, and that only one specific dimer is competent for export from the RER. Mitogenic activity of gp55 could be caused by the cell surface dimers, by the shed derivative, or by the carboxyl-terminal hydrophobic anchors that remain in the membranes after the shedding reaction.

UR - http://www.scopus.com/inward/record.url?scp=0024389461&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0024389461&partnerID=8YFLogxK

M3 - Article

C2 - 2547985

AN - SCOPUS:0024389461

VL - 63

SP - 3561

EP - 3568

JO - Journal of Virology

JF - Journal of Virology

SN - 0022-538X

IS - 9

ER -