Interleukin 8, neutrophil-activating peptide-2 and GRO-α bind to and elicit cell activation via specific and different amino acid residues of CXCR2

James (Jim) Katancik, Ashu Sharma, Ernesto De Nardin

Research output: Contribution to journalArticle

49 Citations (Scopus)

Abstract

The objective of this investigation was to determine the amino acid residues of the human neutrophil CXC chemokine receptor-2 (CXCR2) that are critical for binding the ligands interleukin 8 (IL-8), neutrophil-activating peptide-2 (NAP-2), and growth-related protein alpha (GROα) and critical for receptor-mediated signal transduction. Charged residues of the amino terminus and the first extracellular loop of CXCR2 were targeted for point mutagenesis studies. Seven separate CXCR2 mutants (Glu7, Aspg, Glu12, Asp13, Lys108, Asn110, and Lys120, all to Ala) were generated. Based on the Scatchard analysis of radioligand binding studies, the following amino acids were deemed critical for ligand binding: (i) Asp9, Glu12, Lys108, and Lys120 for IL-8 and (ii) Glu7, Asp9, and Glu12 for GROα. Point mutations in the amino terminus domain (Asp9 and Glu12) and the first extracellular loop (Lys108, Asn110, and Lys120) of CXCR2 reduced cell activation to all three ligands as measured by changes in intracellular calcium concentration. In conclusion, high-affinity binding of IL-8, NAP-2, and GROα to CXCR2 involves interaction with specific and different amino acid residues of CXCR2. Furthermore, we propose that the CXCR2 amino acid residues required for cell activation are not necessarily the same residues required for ligand binding. (C) 2000 Academic Press.

Original languageEnglish (US)
Pages (from-to)1480-1488
Number of pages9
JournalCytokine
Volume12
Issue number10
DOIs
StatePublished - 2000
Externally publishedYes

Fingerprint

Interleukin-8B Receptors
Interleukin-8
Chemical activation
Amino Acids
Ligands
Signal transduction
Mutagenesis
connective tissue-activating peptide
Point Mutation
Signal Transduction
Neutrophils
Calcium

Keywords

  • Chemokines
  • Cytokine receptors
  • Neutrophils

ASJC Scopus subject areas

  • Endocrinology
  • Molecular Biology
  • Immunology
  • Immunology and Allergy

Cite this

Interleukin 8, neutrophil-activating peptide-2 and GRO-α bind to and elicit cell activation via specific and different amino acid residues of CXCR2. / Katancik, James (Jim); Sharma, Ashu; De Nardin, Ernesto.

In: Cytokine, Vol. 12, No. 10, 2000, p. 1480-1488.

Research output: Contribution to journalArticle

@article{4b00e5c083b2455981429547640e8b3a,
title = "Interleukin 8, neutrophil-activating peptide-2 and GRO-α bind to and elicit cell activation via specific and different amino acid residues of CXCR2",
abstract = "The objective of this investigation was to determine the amino acid residues of the human neutrophil CXC chemokine receptor-2 (CXCR2) that are critical for binding the ligands interleukin 8 (IL-8), neutrophil-activating peptide-2 (NAP-2), and growth-related protein alpha (GROα) and critical for receptor-mediated signal transduction. Charged residues of the amino terminus and the first extracellular loop of CXCR2 were targeted for point mutagenesis studies. Seven separate CXCR2 mutants (Glu7, Aspg, Glu12, Asp13, Lys108, Asn110, and Lys120, all to Ala) were generated. Based on the Scatchard analysis of radioligand binding studies, the following amino acids were deemed critical for ligand binding: (i) Asp9, Glu12, Lys108, and Lys120 for IL-8 and (ii) Glu7, Asp9, and Glu12 for GROα. Point mutations in the amino terminus domain (Asp9 and Glu12) and the first extracellular loop (Lys108, Asn110, and Lys120) of CXCR2 reduced cell activation to all three ligands as measured by changes in intracellular calcium concentration. In conclusion, high-affinity binding of IL-8, NAP-2, and GROα to CXCR2 involves interaction with specific and different amino acid residues of CXCR2. Furthermore, we propose that the CXCR2 amino acid residues required for cell activation are not necessarily the same residues required for ligand binding. (C) 2000 Academic Press.",
keywords = "Chemokines, Cytokine receptors, Neutrophils",
author = "Katancik, {James (Jim)} and Ashu Sharma and {De Nardin}, Ernesto",
year = "2000",
doi = "10.1006/cyto.2000.0742",
language = "English (US)",
volume = "12",
pages = "1480--1488",
journal = "Cytokine",
issn = "1043-4666",
publisher = "Academic Press Inc.",
number = "10",

}

TY - JOUR

T1 - Interleukin 8, neutrophil-activating peptide-2 and GRO-α bind to and elicit cell activation via specific and different amino acid residues of CXCR2

AU - Katancik, James (Jim)

AU - Sharma, Ashu

AU - De Nardin, Ernesto

PY - 2000

Y1 - 2000

N2 - The objective of this investigation was to determine the amino acid residues of the human neutrophil CXC chemokine receptor-2 (CXCR2) that are critical for binding the ligands interleukin 8 (IL-8), neutrophil-activating peptide-2 (NAP-2), and growth-related protein alpha (GROα) and critical for receptor-mediated signal transduction. Charged residues of the amino terminus and the first extracellular loop of CXCR2 were targeted for point mutagenesis studies. Seven separate CXCR2 mutants (Glu7, Aspg, Glu12, Asp13, Lys108, Asn110, and Lys120, all to Ala) were generated. Based on the Scatchard analysis of radioligand binding studies, the following amino acids were deemed critical for ligand binding: (i) Asp9, Glu12, Lys108, and Lys120 for IL-8 and (ii) Glu7, Asp9, and Glu12 for GROα. Point mutations in the amino terminus domain (Asp9 and Glu12) and the first extracellular loop (Lys108, Asn110, and Lys120) of CXCR2 reduced cell activation to all three ligands as measured by changes in intracellular calcium concentration. In conclusion, high-affinity binding of IL-8, NAP-2, and GROα to CXCR2 involves interaction with specific and different amino acid residues of CXCR2. Furthermore, we propose that the CXCR2 amino acid residues required for cell activation are not necessarily the same residues required for ligand binding. (C) 2000 Academic Press.

AB - The objective of this investigation was to determine the amino acid residues of the human neutrophil CXC chemokine receptor-2 (CXCR2) that are critical for binding the ligands interleukin 8 (IL-8), neutrophil-activating peptide-2 (NAP-2), and growth-related protein alpha (GROα) and critical for receptor-mediated signal transduction. Charged residues of the amino terminus and the first extracellular loop of CXCR2 were targeted for point mutagenesis studies. Seven separate CXCR2 mutants (Glu7, Aspg, Glu12, Asp13, Lys108, Asn110, and Lys120, all to Ala) were generated. Based on the Scatchard analysis of radioligand binding studies, the following amino acids were deemed critical for ligand binding: (i) Asp9, Glu12, Lys108, and Lys120 for IL-8 and (ii) Glu7, Asp9, and Glu12 for GROα. Point mutations in the amino terminus domain (Asp9 and Glu12) and the first extracellular loop (Lys108, Asn110, and Lys120) of CXCR2 reduced cell activation to all three ligands as measured by changes in intracellular calcium concentration. In conclusion, high-affinity binding of IL-8, NAP-2, and GROα to CXCR2 involves interaction with specific and different amino acid residues of CXCR2. Furthermore, we propose that the CXCR2 amino acid residues required for cell activation are not necessarily the same residues required for ligand binding. (C) 2000 Academic Press.

KW - Chemokines

KW - Cytokine receptors

KW - Neutrophils

UR - http://www.scopus.com/inward/record.url?scp=0033793697&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033793697&partnerID=8YFLogxK

U2 - 10.1006/cyto.2000.0742

DO - 10.1006/cyto.2000.0742

M3 - Article

C2 - 11023662

AN - SCOPUS:0033793697

VL - 12

SP - 1480

EP - 1488

JO - Cytokine

JF - Cytokine

SN - 1043-4666

IS - 10

ER -