Interference of large crabgrass (Digitaria sanguinalis), redroot pigweed (Amaranthus retroflexus), and hairy galinsoga (Galinsoga ciliata) with bell pepper

Rongwei (Rochelle) Fu, Richard A. Ashley

Research output: Contribution to journalArticle

24 Citations (Scopus)

Abstract

Large crabgrass, redroot pigweed, and hairy galinsoga are three important weed species in bell pepper and other crops in the northeastern United States. Field experiments were conducted in 1998 and 1999 to determine the influence of density and relative emergence time of the three weed species on bell pepper fruit yield. Densities of 0, 1, 2, 4, 8, 16, and 32 plants m-1 row were established for each weed species from naturally occurring weed populations. The effects of relative emergence time were studied by investigating the different yield responses to weeds emerging at two different times: 3 d or 2 wk after transplanting of pepper. Both weed density and relative emergence time affected pepper yield loss. The relative competitive ability of weed species varied between years. Large crabgrass was the most competitive species in 1998 and the measure of yield loss at low weed densities, I, was estimated to be 34% on the basis of the nonlinear hyperbolic equation. Redroot pigweed was most competitive in 1999 with an estimate of 88% for I. Hairy galinsoga was the least competitive weed in both years. Maximum yield loss under 32 plants m-1 row ranged from 19% with late-emerging hairy galinsoga in 1998 to 99% with early-emerging redroot pigweed in 1999. A new equation was proposed to characterize the relation between yield loss and weed pressure by expanding the nonlinear hyperbolic equation to include a parameter to account for the change of maximum yield loss with emergence time. The expanded equation generally provided a more accurate prediction of yield loss. In addition, several models are introduced to describe both the effects of density and relative emergence time of multiple weed species on crop yield. Generally these models provided an adequate fit of the data and a good description of the competitive ability of the mixed population.

Original languageEnglish (US)
Pages (from-to)364-372
Number of pages9
JournalWeed Science
Volume54
Issue number2
StatePublished - Mar 2006

Fingerprint

Galinsoga quadriradiata
Galinsoga
Digitaria sanguinalis
Amaranthus retroflexus
sweet peppers
weeds
pepper
Northeastern United States
transplanting (plants)
fruit yield

Keywords

  • Interference
  • Multiple species interference
  • Time of emergence
  • Weed density
  • Weed interference model
  • Yield loss

ASJC Scopus subject areas

  • Agronomy and Crop Science
  • Plant Science

Cite this

@article{14419cbf9836427094e23abd689c596b,
title = "Interference of large crabgrass (Digitaria sanguinalis), redroot pigweed (Amaranthus retroflexus), and hairy galinsoga (Galinsoga ciliata) with bell pepper",
abstract = "Large crabgrass, redroot pigweed, and hairy galinsoga are three important weed species in bell pepper and other crops in the northeastern United States. Field experiments were conducted in 1998 and 1999 to determine the influence of density and relative emergence time of the three weed species on bell pepper fruit yield. Densities of 0, 1, 2, 4, 8, 16, and 32 plants m-1 row were established for each weed species from naturally occurring weed populations. The effects of relative emergence time were studied by investigating the different yield responses to weeds emerging at two different times: 3 d or 2 wk after transplanting of pepper. Both weed density and relative emergence time affected pepper yield loss. The relative competitive ability of weed species varied between years. Large crabgrass was the most competitive species in 1998 and the measure of yield loss at low weed densities, I, was estimated to be 34{\%} on the basis of the nonlinear hyperbolic equation. Redroot pigweed was most competitive in 1999 with an estimate of 88{\%} for I. Hairy galinsoga was the least competitive weed in both years. Maximum yield loss under 32 plants m-1 row ranged from 19{\%} with late-emerging hairy galinsoga in 1998 to 99{\%} with early-emerging redroot pigweed in 1999. A new equation was proposed to characterize the relation between yield loss and weed pressure by expanding the nonlinear hyperbolic equation to include a parameter to account for the change of maximum yield loss with emergence time. The expanded equation generally provided a more accurate prediction of yield loss. In addition, several models are introduced to describe both the effects of density and relative emergence time of multiple weed species on crop yield. Generally these models provided an adequate fit of the data and a good description of the competitive ability of the mixed population.",
keywords = "Interference, Multiple species interference, Time of emergence, Weed density, Weed interference model, Yield loss",
author = "Fu, {Rongwei (Rochelle)} and Ashley, {Richard A.}",
year = "2006",
month = "3",
language = "English (US)",
volume = "54",
pages = "364--372",
journal = "Weed Science",
issn = "0043-1745",
publisher = "Weed Science Society of America",
number = "2",

}

TY - JOUR

T1 - Interference of large crabgrass (Digitaria sanguinalis), redroot pigweed (Amaranthus retroflexus), and hairy galinsoga (Galinsoga ciliata) with bell pepper

AU - Fu, Rongwei (Rochelle)

AU - Ashley, Richard A.

PY - 2006/3

Y1 - 2006/3

N2 - Large crabgrass, redroot pigweed, and hairy galinsoga are three important weed species in bell pepper and other crops in the northeastern United States. Field experiments were conducted in 1998 and 1999 to determine the influence of density and relative emergence time of the three weed species on bell pepper fruit yield. Densities of 0, 1, 2, 4, 8, 16, and 32 plants m-1 row were established for each weed species from naturally occurring weed populations. The effects of relative emergence time were studied by investigating the different yield responses to weeds emerging at two different times: 3 d or 2 wk after transplanting of pepper. Both weed density and relative emergence time affected pepper yield loss. The relative competitive ability of weed species varied between years. Large crabgrass was the most competitive species in 1998 and the measure of yield loss at low weed densities, I, was estimated to be 34% on the basis of the nonlinear hyperbolic equation. Redroot pigweed was most competitive in 1999 with an estimate of 88% for I. Hairy galinsoga was the least competitive weed in both years. Maximum yield loss under 32 plants m-1 row ranged from 19% with late-emerging hairy galinsoga in 1998 to 99% with early-emerging redroot pigweed in 1999. A new equation was proposed to characterize the relation between yield loss and weed pressure by expanding the nonlinear hyperbolic equation to include a parameter to account for the change of maximum yield loss with emergence time. The expanded equation generally provided a more accurate prediction of yield loss. In addition, several models are introduced to describe both the effects of density and relative emergence time of multiple weed species on crop yield. Generally these models provided an adequate fit of the data and a good description of the competitive ability of the mixed population.

AB - Large crabgrass, redroot pigweed, and hairy galinsoga are three important weed species in bell pepper and other crops in the northeastern United States. Field experiments were conducted in 1998 and 1999 to determine the influence of density and relative emergence time of the three weed species on bell pepper fruit yield. Densities of 0, 1, 2, 4, 8, 16, and 32 plants m-1 row were established for each weed species from naturally occurring weed populations. The effects of relative emergence time were studied by investigating the different yield responses to weeds emerging at two different times: 3 d or 2 wk after transplanting of pepper. Both weed density and relative emergence time affected pepper yield loss. The relative competitive ability of weed species varied between years. Large crabgrass was the most competitive species in 1998 and the measure of yield loss at low weed densities, I, was estimated to be 34% on the basis of the nonlinear hyperbolic equation. Redroot pigweed was most competitive in 1999 with an estimate of 88% for I. Hairy galinsoga was the least competitive weed in both years. Maximum yield loss under 32 plants m-1 row ranged from 19% with late-emerging hairy galinsoga in 1998 to 99% with early-emerging redroot pigweed in 1999. A new equation was proposed to characterize the relation between yield loss and weed pressure by expanding the nonlinear hyperbolic equation to include a parameter to account for the change of maximum yield loss with emergence time. The expanded equation generally provided a more accurate prediction of yield loss. In addition, several models are introduced to describe both the effects of density and relative emergence time of multiple weed species on crop yield. Generally these models provided an adequate fit of the data and a good description of the competitive ability of the mixed population.

KW - Interference

KW - Multiple species interference

KW - Time of emergence

KW - Weed density

KW - Weed interference model

KW - Yield loss

UR - http://www.scopus.com/inward/record.url?scp=33750425319&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33750425319&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:33750425319

VL - 54

SP - 364

EP - 372

JO - Weed Science

JF - Weed Science

SN - 0043-1745

IS - 2

ER -