Interactions of CBL with BCR-ABL and CRKL in BCR-ABL-transformed myeloid cells

Arun Bhat, Kathryn Kolibaba, Tsukasa Oda, Sayuri Ohno-Jones, Conor Heaney, Brian J. Druker

Research output: Contribution to journalArticlepeer-review

64 Scopus citations

Abstract

The Philadelphia chromosome, detected in virtually all cases of chronic myelogenous leukemia (CML), is formed by a reciprocal translocation between chromosomes 9 and 22 that fuses BCR-encoded sequences upstream of exon 2 of c-ABL. The BCR-ABL fusion creates a gene whose protein product, p210BCR-ABL, has been implicated as the cause of the disease. Although ABL kinase activity has been shown to be required for the transforming abilities of BCR-ABL and numerous substrates of the BCR-ABL tyrosine kinase have been identified, the requirement of most of these substrates for the transforming function of BCR- ABL is unknown. In this study we mapped a direct binding site of the c-CBL proto-oncogene to the SH2 domain of BCR-ABL. This interaction only occurs under conditions where c-CBL is tyrosine-phosphorylated. Despite the direct interaction of c-CBL with the SH2 domain of BCR-ABL, deletion of the SH2 domain of BCR-ABL did not result in an alteration in the complex formation of BCR-ABL and c-CBL, suggesting that another site of direct interaction between c-CBL and BCR-ABL exists or that another protein mediates an indirect interaction of c-CBL and BCR-ABL. Since CRKL, an SH2, SH3 domain-containing adapter protein is known to bind directly to BCR-ABL and also binds to tyrosine-phosphorylated c-CBL, the ability of CRKL to mediate a complex between c-CBL and BCR-ABL was examined.

Original languageEnglish (US)
Pages (from-to)16170-16175
Number of pages6
JournalJournal of Biological Chemistry
Volume272
Issue number26
DOIs
StatePublished - Jun 27 1997

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Interactions of CBL with BCR-ABL and CRKL in BCR-ABL-transformed myeloid cells'. Together they form a unique fingerprint.

Cite this