Influences of implant and framework materials on stress distribution: A three-dimensional finite element analysis study

Gulcan Bahadirli, Suat Yilmaz, Tobie Jones, Deniz Sen

Research output: Contribution to journalArticle

Abstract

Purpose: The aim of this study was to analyze and compare the stress distribution patterns of different implant and restorative materials in the supporting tissue and implants. Materials and Methods: Twelve different implant/bone models were created using SolidWorks 2015 software (SolidWorks Corp) and analyzed using the finite element method. Straumann Bone Level implants with zirconia abutments and single-piece Straumann PURE Ceramic implants (Institute Straumann) restored with lithium disilicate glassceramic and zirconia ceramic cement-retained crowns were evaluated. A 118.2-N load was applied to the coronal aspect of the buccal cusp at a 75.8-degree angle in relation to the occlusal plane. Principal stress values for cortical and trabecular bone and the equivalent von Mises stress values for implants and frameworks were calculated. Results: Zirconia (ZrO2) implant models showed lower principal stress values than the commercially pure titanium (cpTi) and titanium-zirconium (TiZr) implant models in cortical bone. All models showed similar principal stress values in trabecular bone. Von Mises stress values at the cpTi and TiZr implants were similar; however, values observed of ZrO2 implants were higher. TiZr implants of 3.3 mm diameter showed similar strength to 4.1-mm-diameter cpTi implants. Both zirconia and lithium disilicate glass-ceramic frameworks transferred similar von Mises stress values in the supporting tissue of implant-supported prostheses. Conclusion: Narrow-diameter TiZr implants may be preferred for patients who have insufficient bone volume without bone augmentation procedures due to the material's enhanced biomechanical properties. ZrO2 implants may be a suitable alternative for esthetic regions. Further clinical studies are recommended to investigate the long-term performance of TiZr and ZrO2 implants.

Original languageEnglish (US)
Pages (from-to)e117-e126
JournalInternational Journal of Oral and Maxillofacial Implants
Volume33
Issue number5
DOIs
StatePublished - Jan 1 2018

Fingerprint

Finite Element Analysis
Titanium
Bone and Bones
Ceramics
Dental Occlusion
Cheek
Crowns
Esthetics
Prostheses and Implants
Software
zirconium oxide

Keywords

  • Lithium disilicate glass-ceramic
  • Three-dimensional finite element analysis
  • TiZr implants
  • Zirconia
  • Zirconia implants

ASJC Scopus subject areas

  • Oral Surgery

Cite this

Influences of implant and framework materials on stress distribution : A three-dimensional finite element analysis study. / Bahadirli, Gulcan; Yilmaz, Suat; Jones, Tobie; Sen, Deniz.

In: International Journal of Oral and Maxillofacial Implants, Vol. 33, No. 5, 01.01.2018, p. e117-e126.

Research output: Contribution to journalArticle

@article{91efeaba563e441e9558abc93dcfbf63,
title = "Influences of implant and framework materials on stress distribution: A three-dimensional finite element analysis study",
abstract = "Purpose: The aim of this study was to analyze and compare the stress distribution patterns of different implant and restorative materials in the supporting tissue and implants. Materials and Methods: Twelve different implant/bone models were created using SolidWorks 2015 software (SolidWorks Corp) and analyzed using the finite element method. Straumann Bone Level implants with zirconia abutments and single-piece Straumann PURE Ceramic implants (Institute Straumann) restored with lithium disilicate glassceramic and zirconia ceramic cement-retained crowns were evaluated. A 118.2-N load was applied to the coronal aspect of the buccal cusp at a 75.8-degree angle in relation to the occlusal plane. Principal stress values for cortical and trabecular bone and the equivalent von Mises stress values for implants and frameworks were calculated. Results: Zirconia (ZrO2) implant models showed lower principal stress values than the commercially pure titanium (cpTi) and titanium-zirconium (TiZr) implant models in cortical bone. All models showed similar principal stress values in trabecular bone. Von Mises stress values at the cpTi and TiZr implants were similar; however, values observed of ZrO2 implants were higher. TiZr implants of 3.3 mm diameter showed similar strength to 4.1-mm-diameter cpTi implants. Both zirconia and lithium disilicate glass-ceramic frameworks transferred similar von Mises stress values in the supporting tissue of implant-supported prostheses. Conclusion: Narrow-diameter TiZr implants may be preferred for patients who have insufficient bone volume without bone augmentation procedures due to the material's enhanced biomechanical properties. ZrO2 implants may be a suitable alternative for esthetic regions. Further clinical studies are recommended to investigate the long-term performance of TiZr and ZrO2 implants.",
keywords = "Lithium disilicate glass-ceramic, Three-dimensional finite element analysis, TiZr implants, Zirconia, Zirconia implants",
author = "Gulcan Bahadirli and Suat Yilmaz and Tobie Jones and Deniz Sen",
year = "2018",
month = "1",
day = "1",
doi = "10.11607/jomi.6261",
language = "English (US)",
volume = "33",
pages = "e117--e126",
journal = "The International journal of oral & maxillofacial implants",
issn = "0882-2786",
publisher = "Quintessence Publishing Company",
number = "5",

}

TY - JOUR

T1 - Influences of implant and framework materials on stress distribution

T2 - A three-dimensional finite element analysis study

AU - Bahadirli, Gulcan

AU - Yilmaz, Suat

AU - Jones, Tobie

AU - Sen, Deniz

PY - 2018/1/1

Y1 - 2018/1/1

N2 - Purpose: The aim of this study was to analyze and compare the stress distribution patterns of different implant and restorative materials in the supporting tissue and implants. Materials and Methods: Twelve different implant/bone models were created using SolidWorks 2015 software (SolidWorks Corp) and analyzed using the finite element method. Straumann Bone Level implants with zirconia abutments and single-piece Straumann PURE Ceramic implants (Institute Straumann) restored with lithium disilicate glassceramic and zirconia ceramic cement-retained crowns were evaluated. A 118.2-N load was applied to the coronal aspect of the buccal cusp at a 75.8-degree angle in relation to the occlusal plane. Principal stress values for cortical and trabecular bone and the equivalent von Mises stress values for implants and frameworks were calculated. Results: Zirconia (ZrO2) implant models showed lower principal stress values than the commercially pure titanium (cpTi) and titanium-zirconium (TiZr) implant models in cortical bone. All models showed similar principal stress values in trabecular bone. Von Mises stress values at the cpTi and TiZr implants were similar; however, values observed of ZrO2 implants were higher. TiZr implants of 3.3 mm diameter showed similar strength to 4.1-mm-diameter cpTi implants. Both zirconia and lithium disilicate glass-ceramic frameworks transferred similar von Mises stress values in the supporting tissue of implant-supported prostheses. Conclusion: Narrow-diameter TiZr implants may be preferred for patients who have insufficient bone volume without bone augmentation procedures due to the material's enhanced biomechanical properties. ZrO2 implants may be a suitable alternative for esthetic regions. Further clinical studies are recommended to investigate the long-term performance of TiZr and ZrO2 implants.

AB - Purpose: The aim of this study was to analyze and compare the stress distribution patterns of different implant and restorative materials in the supporting tissue and implants. Materials and Methods: Twelve different implant/bone models were created using SolidWorks 2015 software (SolidWorks Corp) and analyzed using the finite element method. Straumann Bone Level implants with zirconia abutments and single-piece Straumann PURE Ceramic implants (Institute Straumann) restored with lithium disilicate glassceramic and zirconia ceramic cement-retained crowns were evaluated. A 118.2-N load was applied to the coronal aspect of the buccal cusp at a 75.8-degree angle in relation to the occlusal plane. Principal stress values for cortical and trabecular bone and the equivalent von Mises stress values for implants and frameworks were calculated. Results: Zirconia (ZrO2) implant models showed lower principal stress values than the commercially pure titanium (cpTi) and titanium-zirconium (TiZr) implant models in cortical bone. All models showed similar principal stress values in trabecular bone. Von Mises stress values at the cpTi and TiZr implants were similar; however, values observed of ZrO2 implants were higher. TiZr implants of 3.3 mm diameter showed similar strength to 4.1-mm-diameter cpTi implants. Both zirconia and lithium disilicate glass-ceramic frameworks transferred similar von Mises stress values in the supporting tissue of implant-supported prostheses. Conclusion: Narrow-diameter TiZr implants may be preferred for patients who have insufficient bone volume without bone augmentation procedures due to the material's enhanced biomechanical properties. ZrO2 implants may be a suitable alternative for esthetic regions. Further clinical studies are recommended to investigate the long-term performance of TiZr and ZrO2 implants.

KW - Lithium disilicate glass-ceramic

KW - Three-dimensional finite element analysis

KW - TiZr implants

KW - Zirconia

KW - Zirconia implants

UR - http://www.scopus.com/inward/record.url?scp=85054638747&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85054638747&partnerID=8YFLogxK

U2 - 10.11607/jomi.6261

DO - 10.11607/jomi.6261

M3 - Article

VL - 33

SP - e117-e126

JO - The International journal of oral & maxillofacial implants

JF - The International journal of oral & maxillofacial implants

SN - 0882-2786

IS - 5

ER -