Increased mitochondrial fission and neuronal dysfunction in Huntington's disease: Implications for molecular inhibitors of excessive mitochondrial fission

P. Hemachandra Reddy

    Research output: Contribution to journalReview article

    49 Scopus citations

    Abstract

    Huntington's disease (HD) is a fatal, progressive neurodegenerative disease with an autosomal dominant inheritance, characterized by chorea, involuntary movements of the limbs and cognitive impairments. Since identification of the HD gene in 1993, tremendous progress has been made in identifying underlying mechanisms involved in HD pathogenesis and progression, and in developing and testing molecular therapeutic targets, using cell and animal models of HD. Recent studies have found that mutant Huntingtin (mHtt) interacts with Dynamin-related protein 1 (Drp1), causing excessive fragmentation of mitochondria, leading to abnormal mitochondrial dynamics and neuronal damage in HD-affected neurons. Some progress has been made in developing molecules that can reduce excessive mitochondrial fission while maintaining both the normal balance between mitochondrial fusion and fission, and normal mitochondrial function in diseases in which excessive mitochondrial fission has been implicated. In this article, we highlight investigations that are determining the involvement of excessive mitochondrial fission in HD pathogenesis, and that are developing inhibitors of excessive mitochondrial fission for potential therapeutic applications.

    Original languageEnglish (US)
    Pages (from-to)951-955
    Number of pages5
    JournalDrug Discovery Today
    Volume19
    Issue number7
    DOIs
    StatePublished - Jul 2014

    ASJC Scopus subject areas

    • Pharmacology
    • Drug Discovery

    Fingerprint Dive into the research topics of 'Increased mitochondrial fission and neuronal dysfunction in Huntington's disease: Implications for molecular inhibitors of excessive mitochondrial fission'. Together they form a unique fingerprint.

  • Cite this