TY - JOUR
T1 - Histamine, cAMP, and activation of piglet gastric mucosa.
AU - Machen, T. E.
AU - Rutten, M. J.
AU - Ekblad, E. B.
PY - 1982/2/1
Y1 - 1982/2/1
N2 - The involvement of cAMP as a second messenger for histamine-induced H+ secretion was studied in a physiologically active, in vitro preparation of piglet gastric mucosa. During the first 5--10 min of stimulation with either histamine or the cAMP phosphodiesterase inhibitor 3-isobutyl-1,4-methylxanthine (IBMX), increases (greater than or equal to 5-fold) in tissue cAMP content [(c-AMP]) were well correlated with the characteristic decrease in transepithelial resistance (R); these changes precede H+ secretion by several minutes. Control experiments indicate that, during these treatments, tissue [cAMP] is dominated by the [cAMP] of oxyntic cells alone; change in R and H+ are also related to activity of these cells alone. At the steady state (45 min), histamine and IBMX caused equivalent increases in H+ and decreases in R, but [cAMP] was markedly different in the two cases. With IBMX [cAMP] was elevated at least fivefold, whereas with histamine [cAMP] was less than or equal to 50% above resting levels. The tissue is also stimulated by exogenous additions of dibutyryl cAMP. A histamine-sensitive adenylate cyclase was present in isolated, purified oxyntic cells. The histamine sensitivity of the cyclase was very similar to that which the intact tissue exhibits for histamine-induced changes in H+ and R. The cyclase activity was blocked by cimetidine but not by promethazine. We conclude that during stimulation histamine activates a histamine (H2)-sensitive adenylate cyclase of oxyntic cells, and there is a rapid increase in cellular [cAMP] that is involved in activation of H+ transport and other associated changes of oxyntic cells. An active phosphodiesterase is responsible for reducing [cAMP] to a level much below the "peak" value. Other cellular factors (e.g. protein kinases and Ca2+-calmodulin) must also be involved in the maintenance of the stimulated state of oxyntic cells.
AB - The involvement of cAMP as a second messenger for histamine-induced H+ secretion was studied in a physiologically active, in vitro preparation of piglet gastric mucosa. During the first 5--10 min of stimulation with either histamine or the cAMP phosphodiesterase inhibitor 3-isobutyl-1,4-methylxanthine (IBMX), increases (greater than or equal to 5-fold) in tissue cAMP content [(c-AMP]) were well correlated with the characteristic decrease in transepithelial resistance (R); these changes precede H+ secretion by several minutes. Control experiments indicate that, during these treatments, tissue [cAMP] is dominated by the [cAMP] of oxyntic cells alone; change in R and H+ are also related to activity of these cells alone. At the steady state (45 min), histamine and IBMX caused equivalent increases in H+ and decreases in R, but [cAMP] was markedly different in the two cases. With IBMX [cAMP] was elevated at least fivefold, whereas with histamine [cAMP] was less than or equal to 50% above resting levels. The tissue is also stimulated by exogenous additions of dibutyryl cAMP. A histamine-sensitive adenylate cyclase was present in isolated, purified oxyntic cells. The histamine sensitivity of the cyclase was very similar to that which the intact tissue exhibits for histamine-induced changes in H+ and R. The cyclase activity was blocked by cimetidine but not by promethazine. We conclude that during stimulation histamine activates a histamine (H2)-sensitive adenylate cyclase of oxyntic cells, and there is a rapid increase in cellular [cAMP] that is involved in activation of H+ transport and other associated changes of oxyntic cells. An active phosphodiesterase is responsible for reducing [cAMP] to a level much below the "peak" value. Other cellular factors (e.g. protein kinases and Ca2+-calmodulin) must also be involved in the maintenance of the stimulated state of oxyntic cells.
UR - http://www.scopus.com/inward/record.url?scp=0020097081&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0020097081&partnerID=8YFLogxK
M3 - Article
C2 - 6175225
AN - SCOPUS:0020097081
SN - 0002-9513
VL - 242
SP - G79-84
JO - The American journal of physiology
JF - The American journal of physiology
IS - 2
ER -