Abstract
A method is developed and described for analysis of [11C]-meta-hydroxyephedrine, [11C]MHED, a tracer of cardiac function, and its metabolites in plasma samples. The method combines on-column solid-phase extraction and separation on a single weak cation-exchange column. Phenylethanolamines were used to develop the separation method that concentrates the analytes on-column from physiological saline and then elutes them by changing to an acidic mobile phase. Hydrophobic interactions determine the selectivity, and elution order is the same as for reversed-phase liquid chromatography on a C,, stationary phase. The mechanism of separation is mixed mode, with ion-exchange coupled with a reversed-phase liquid chromatography mechanism. Each sample analysis requires only 10 min and does not require deproteinization or the use of organic solvents. In human samples, a single plasma metabolite of [11C]MHED along with the parent compound were observed using this method. The method was sufficiently rapid so that in 70 min seven samples were assayed, providing a well-defined time course for MHED and its metabolites in blood. The metabolite concentration increased with time to ~85% of the plasma activity 50 min after administration. The results with the developed method are comparable to those described for reversed-phase separations, with the advantage that our method does not require deproteinization, reducing sample analysis time by a factor of two.
Original language | English (US) |
---|---|
Pages (from-to) | 31-41 |
Number of pages | 11 |
Journal | Journal of Chromatography B: Biomedical Applications |
Volume | 693 |
Issue number | 1 |
DOIs | |
State | Published - May 23 1997 |
Externally published | Yes |
Keywords
- Hydroxyephedrine
- Phenylethanolamines
ASJC Scopus subject areas
- Chemistry(all)