Herpes simplex virus gE/gI expressed in epithelial cells interferes with cell-to-cell spread

Wendy J. Collins, David C. Johnson

Research output: Contribution to journalArticle

39 Scopus citations

Abstract

The herpes simplex virus (HSV) glycoprotein heterodimer gE/gI plays an important role in virus cell-to-cell spread in epithelial and neuronal tissues. In an analogous fashion, gE/gI promotes virus spread between certain cell types in culture, e.g., keratinocytes and epithelial cells, cells that are polarized or that form extensive cell junctions. One mechanism by which gE/gI facilitates cell-to-cell spread involves selective sorting of nascent virions to cell junctions, a process that requires the cytoplasmic domain of gE. However, the large extracellular domains of gE/gI also appear to be involved in cell-to-cell spread. Here, we show that coexpression of a truncated form of gE and gI in a human keratinocyte line, HaCaT cells, decreased the spread of HSV between cells. This truncated gE/gI was found extensively at cell junctions. Expression of wild-type gE/gI that accumulates at intracellular sites, in the trans-Golgi network, did not reduce cell-to-cell spread. There was no obvious reduction in production of infectious HSV in cells expressing gE/gI, and virus particles accumulated at cell junctions, not at intracellular sites. Expression of HSV gD, which is known to bind virus receptors, also blocked cell-to-cell spread. Therefore, like gD, gE/gI appears to be able to interact with cellular components of cell junctions, gE/gI receptors which can promote HSV cell-to-cell spread.

Original languageEnglish (US)
Pages (from-to)2686-2695
Number of pages10
JournalJournal of virology
Volume77
Issue number4
DOIs
StatePublished - Feb 1 2003

    Fingerprint

ASJC Scopus subject areas

  • Microbiology
  • Immunology
  • Insect Science
  • Virology

Cite this