Growth hormone rapidly activates rat serine protease inhibitor 2.1 gene transcription and induces a DNA-binding activity distinct from those of Stat1, -3, and -4

Michael J. Thomas, Ann M. Gronowski, Susan A. Berry, Pearl L. Bergad, Peter Rotwein

    Research output: Contribution to journalArticlepeer-review

    38 Scopus citations

    Abstract

    Transcriptional regulation by growth hormone (GH) represents the culmination of signal transduction pathways that are initiated by the cell surface GH receptor and are targeted to the nucleus. Recent studies have demonstrated that the activated GH receptor can stimulate Stat1, a cytoplasmic transcription factor that becomes tyrosine phosphorylated and translocates to the nucleus, where it can interact with specific DNA sequences to modulate gene expression. GH also has been found to induce protein binding to a portion of the rat serine protease inhibitor (Spi) 2.1 gene promoter that is required for GH-induced transcription of Spi 2.1. Using GH-deficient hypophysectomized rats as a model, we show that GH treatment rapidly and potently induces both nuclear Spi 2.1 mRNA expression in the liver and specific nuclear protein binding to a 45-bp segment of the Spi 2.1 gene promoter. A GH-inducible gel-shifted complex appears within 15 min of systemic hormone administration and can be inhibited by an antiphosphotyrosine monoclonal antibody but is not blocked by a polyclonal antiserum to Stat1, Stat3, or Stat4, even though the nucleotide sequence contains two gamma interferon-activated sequence-like elements that could interact with STAT proteins. By Southwestern (DNA-protein) blot analysis, ~41- and 35-kDa GH-inducible proteins were detected in hepatic nuclear extracts with the Spi 2.1 DNA probe. Thus, a GH-activated signaling pathway stimulates Spi 2.1 gene expression through a unique mechanism that does not appear to involve known members of the STAT family of transcription factors.

    Original languageEnglish (US)
    Pages (from-to)12-18
    Number of pages7
    JournalMolecular and cellular biology
    Volume15
    Issue number1
    DOIs
    StatePublished - Jan 1995

    ASJC Scopus subject areas

    • Molecular Biology
    • Cell Biology

    Fingerprint Dive into the research topics of 'Growth hormone rapidly activates rat serine protease inhibitor 2.1 gene transcription and induces a DNA-binding activity distinct from those of Stat1, -3, and -4'. Together they form a unique fingerprint.

    Cite this