Gonadotropin-releasing hormone immunoreactivity in the nasal epithelia of adults with Kallmann's syndrome and isolated hypogonadotropic hypogonadism and in the early midtrimester human fetus

Richard Quinton, Wohaib Hasan, William Grant, Chris Thrasivoulou, Robert E. Quiney, G. Michael Besser, Pierre M G Bouloux

Research output: Contribution to journalArticle

40 Citations (Scopus)

Abstract

GnRH-secreting neurons are known to originate in the epithelium of the medial olfactory placode, whence they migrate along the axons of the terminal nerve via the forebrain and into the hypothalamus. Synaptic contact between the developing olfactory bulbs and fascicles of the vomeronasal, terminal, and olfactory nerves does not occur in Kallmann's syndrome. Consequently, there is migration arrest of GnRH cells and partial or complete failure of formation of the olfactory bulbs, resulting in severe olfactory deficit and hypogonadotropic hypogonadism. In the present study, using an immunofluorescent, double immunostaining technique and confocal laser scanning microscopy, we observed GnRH-immunoreactive neurons in the hypothalamus of a 14-week-old human fetus. However, migration of GnRH neurons was not complete, and indeed, such cells were seen to be migrating along terminal nerve fascicles beneath the cribriform plate in a 16-week-old fetus. The same immunofluorescent technique demonstrated the presence of GnRH cells in biopsies of nasal mucosa obtained from three adults with Kallmann's syndrome, one normosmic subject with hypogonadotropic hypogonadism, and a eugonadal male cadaver. These findings are consistent with two different interpretations: the nasal GnRH neurons may be vestigial, representing cells that failed to migrate during embryogenesis; alternatively, they may have been generated de novo later in life, a possibility consistent with the recognized plasticity of human postnatal olfactory neuroepithelium. They also reveal that subjects with the normosmic (i.e. non-Kallmann's) form of GnRH deficiency are able to synthesize immunologically recognizable GnRH, implying that failure of GnRH synthesis is not responsible for this type of hypogonadotropic hypogonadism.

Original languageEnglish (US)
Pages (from-to)309-314
Number of pages6
JournalJournal of Clinical Endocrinology and Metabolism
Volume82
Issue number1
DOIs
StatePublished - 1997
Externally publishedYes

Fingerprint

Kallmann Syndrome
Hypogonadism
Nasal Mucosa
Second Pregnancy Trimester
Gonadotropin-Releasing Hormone
Fetus
Neurons
Olfactory Bulb
Hypothalamus
Ethmoid Bone
Vomeronasal Organ
Olfactory Nerve
Olfactory Mucosa
Biopsy
Presynaptic Terminals
Prosencephalon
Nose
Cadaver
Confocal Microscopy
Embryonic Development

ASJC Scopus subject areas

  • Biochemistry
  • Endocrinology, Diabetes and Metabolism

Cite this

Gonadotropin-releasing hormone immunoreactivity in the nasal epithelia of adults with Kallmann's syndrome and isolated hypogonadotropic hypogonadism and in the early midtrimester human fetus. / Quinton, Richard; Hasan, Wohaib; Grant, William; Thrasivoulou, Chris; Quiney, Robert E.; Besser, G. Michael; Bouloux, Pierre M G.

In: Journal of Clinical Endocrinology and Metabolism, Vol. 82, No. 1, 1997, p. 309-314.

Research output: Contribution to journalArticle

Quinton, Richard ; Hasan, Wohaib ; Grant, William ; Thrasivoulou, Chris ; Quiney, Robert E. ; Besser, G. Michael ; Bouloux, Pierre M G. / Gonadotropin-releasing hormone immunoreactivity in the nasal epithelia of adults with Kallmann's syndrome and isolated hypogonadotropic hypogonadism and in the early midtrimester human fetus. In: Journal of Clinical Endocrinology and Metabolism. 1997 ; Vol. 82, No. 1. pp. 309-314.
@article{9eae9de6bab94b25bca6e91548e504c9,
title = "Gonadotropin-releasing hormone immunoreactivity in the nasal epithelia of adults with Kallmann's syndrome and isolated hypogonadotropic hypogonadism and in the early midtrimester human fetus",
abstract = "GnRH-secreting neurons are known to originate in the epithelium of the medial olfactory placode, whence they migrate along the axons of the terminal nerve via the forebrain and into the hypothalamus. Synaptic contact between the developing olfactory bulbs and fascicles of the vomeronasal, terminal, and olfactory nerves does not occur in Kallmann's syndrome. Consequently, there is migration arrest of GnRH cells and partial or complete failure of formation of the olfactory bulbs, resulting in severe olfactory deficit and hypogonadotropic hypogonadism. In the present study, using an immunofluorescent, double immunostaining technique and confocal laser scanning microscopy, we observed GnRH-immunoreactive neurons in the hypothalamus of a 14-week-old human fetus. However, migration of GnRH neurons was not complete, and indeed, such cells were seen to be migrating along terminal nerve fascicles beneath the cribriform plate in a 16-week-old fetus. The same immunofluorescent technique demonstrated the presence of GnRH cells in biopsies of nasal mucosa obtained from three adults with Kallmann's syndrome, one normosmic subject with hypogonadotropic hypogonadism, and a eugonadal male cadaver. These findings are consistent with two different interpretations: the nasal GnRH neurons may be vestigial, representing cells that failed to migrate during embryogenesis; alternatively, they may have been generated de novo later in life, a possibility consistent with the recognized plasticity of human postnatal olfactory neuroepithelium. They also reveal that subjects with the normosmic (i.e. non-Kallmann's) form of GnRH deficiency are able to synthesize immunologically recognizable GnRH, implying that failure of GnRH synthesis is not responsible for this type of hypogonadotropic hypogonadism.",
author = "Richard Quinton and Wohaib Hasan and William Grant and Chris Thrasivoulou and Quiney, {Robert E.} and Besser, {G. Michael} and Bouloux, {Pierre M G}",
year = "1997",
doi = "10.1210/jc.82.1.309",
language = "English (US)",
volume = "82",
pages = "309--314",
journal = "Journal of Clinical Endocrinology and Metabolism",
issn = "0021-972X",
publisher = "The Endocrine Society",
number = "1",

}

TY - JOUR

T1 - Gonadotropin-releasing hormone immunoreactivity in the nasal epithelia of adults with Kallmann's syndrome and isolated hypogonadotropic hypogonadism and in the early midtrimester human fetus

AU - Quinton, Richard

AU - Hasan, Wohaib

AU - Grant, William

AU - Thrasivoulou, Chris

AU - Quiney, Robert E.

AU - Besser, G. Michael

AU - Bouloux, Pierre M G

PY - 1997

Y1 - 1997

N2 - GnRH-secreting neurons are known to originate in the epithelium of the medial olfactory placode, whence they migrate along the axons of the terminal nerve via the forebrain and into the hypothalamus. Synaptic contact between the developing olfactory bulbs and fascicles of the vomeronasal, terminal, and olfactory nerves does not occur in Kallmann's syndrome. Consequently, there is migration arrest of GnRH cells and partial or complete failure of formation of the olfactory bulbs, resulting in severe olfactory deficit and hypogonadotropic hypogonadism. In the present study, using an immunofluorescent, double immunostaining technique and confocal laser scanning microscopy, we observed GnRH-immunoreactive neurons in the hypothalamus of a 14-week-old human fetus. However, migration of GnRH neurons was not complete, and indeed, such cells were seen to be migrating along terminal nerve fascicles beneath the cribriform plate in a 16-week-old fetus. The same immunofluorescent technique demonstrated the presence of GnRH cells in biopsies of nasal mucosa obtained from three adults with Kallmann's syndrome, one normosmic subject with hypogonadotropic hypogonadism, and a eugonadal male cadaver. These findings are consistent with two different interpretations: the nasal GnRH neurons may be vestigial, representing cells that failed to migrate during embryogenesis; alternatively, they may have been generated de novo later in life, a possibility consistent with the recognized plasticity of human postnatal olfactory neuroepithelium. They also reveal that subjects with the normosmic (i.e. non-Kallmann's) form of GnRH deficiency are able to synthesize immunologically recognizable GnRH, implying that failure of GnRH synthesis is not responsible for this type of hypogonadotropic hypogonadism.

AB - GnRH-secreting neurons are known to originate in the epithelium of the medial olfactory placode, whence they migrate along the axons of the terminal nerve via the forebrain and into the hypothalamus. Synaptic contact between the developing olfactory bulbs and fascicles of the vomeronasal, terminal, and olfactory nerves does not occur in Kallmann's syndrome. Consequently, there is migration arrest of GnRH cells and partial or complete failure of formation of the olfactory bulbs, resulting in severe olfactory deficit and hypogonadotropic hypogonadism. In the present study, using an immunofluorescent, double immunostaining technique and confocal laser scanning microscopy, we observed GnRH-immunoreactive neurons in the hypothalamus of a 14-week-old human fetus. However, migration of GnRH neurons was not complete, and indeed, such cells were seen to be migrating along terminal nerve fascicles beneath the cribriform plate in a 16-week-old fetus. The same immunofluorescent technique demonstrated the presence of GnRH cells in biopsies of nasal mucosa obtained from three adults with Kallmann's syndrome, one normosmic subject with hypogonadotropic hypogonadism, and a eugonadal male cadaver. These findings are consistent with two different interpretations: the nasal GnRH neurons may be vestigial, representing cells that failed to migrate during embryogenesis; alternatively, they may have been generated de novo later in life, a possibility consistent with the recognized plasticity of human postnatal olfactory neuroepithelium. They also reveal that subjects with the normosmic (i.e. non-Kallmann's) form of GnRH deficiency are able to synthesize immunologically recognizable GnRH, implying that failure of GnRH synthesis is not responsible for this type of hypogonadotropic hypogonadism.

UR - http://www.scopus.com/inward/record.url?scp=0031014999&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0031014999&partnerID=8YFLogxK

U2 - 10.1210/jc.82.1.309

DO - 10.1210/jc.82.1.309

M3 - Article

VL - 82

SP - 309

EP - 314

JO - Journal of Clinical Endocrinology and Metabolism

JF - Journal of Clinical Endocrinology and Metabolism

SN - 0021-972X

IS - 1

ER -