Glutathione depletion alters hepatocellular high-energy phosphate metabolism

Takashi Kobayashi, Malcolm K. Robinson, Vickye Robinson, Eve Derosa, Douglas W. Wilmore, Danny Jacobs

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

Oxygen free radicals have recently been implicated as a major cause of tissue injury in critically ill patients. Glutathione (GSH) is a potent endogenous antioxidant that may be important in minimizing oxidant-induced organ damage. However, this tripeptide is depleted during severe illness. In order to determine the effect of GSH depletion on hepatic high-energy phosphate metabolism, in vivo31P magnetic resonance spectroscopy was used to measure phosphate ratios in male Wistar rats given 1 ml/kg of diethylmaleate (DEM), an agent that binds and thus depletes tissue GSH, or corn oil vehicle intraperitoneally. Spectra of the liver were obtained in noninjected animals (baseline, n = 15) and in rats 2 and 24 hr after the intraperitoneal injection of DEM (n = 20) or corn oil (control, n = 20). These spectra were used to measure hepatocellular pH, phosphomonoester to ATP (PME/ATP), and phosphodiester to ATP ratios, measures of hepatocellu]ar damage; and the inorganic phosphate (Pi)/ATP ratio, a measure of energy status. In addition, tissue GSH, phosphofructokinase, citrate synthase, and β-OH-acyl-Co-A dehydrogenase activities as well as hepatocellular ATP were measured in vitro in representative liver samples. Hepatic GSH levels were maximally depressed by 85% 2 hr after the injection of DEM (6.94 ± 0.34 vs 0.94 ± 0.22 μM/g wet wt, baseline vs 2° DEM). This was associated with a marked increase in the PME/ATP and Pi/ ATP ratios by 25 and 33%, respectively, and both ratios were significantly correlated with the severity of hepatic GSH depletion (r = 0.63, P < 0.001 and r = 0.42, P < 0.01, respectively). In addition, the intracellular pH decreased from 7.41 ± 0.02 to 7.33 ± 0.02 (P < 0.05) 2 hr after the injection of DEM. At this time citrate synthase and β-OH-acyl-Co-A dehydrogenase activities were significantly elevated in the GSH-depieted animals. In contrast, ATP levels did not change significantly (2.92 ± 0.07 vs 3.20 ± 0.28 μM/g wet wt, baseline vs 2° DEM) and PFK activity was similar in both groups. We conclude that (1) GSH depletion in rats alters the hepatocellular energy status primarily due to increased ATP turnover; (2) under these conditions, hepatic ATP synthesis via the oxidation of fatty acids accelerates to meet an increased energy demand; and (3) these changes in hepatocellular energetics and PME/ATP ratios may indicate early hepatocyte injury and are likely due to increased oxidative stress unveiled by GSH depletion. The GSH depletion associated with critical illness may contribute to the development of liver dysfunction in severely injured patients.

Original languageEnglish (US)
Pages (from-to)189-195
Number of pages7
JournalJournal of Surgical Research
Volume54
Issue number3
DOIs
StatePublished - Jan 1 1993
Externally publishedYes

Fingerprint

diethyl maleate
Energy Metabolism
Glutathione
Adenosine Triphosphate
Phosphates
Liver
Citrate (si)-Synthase
Corn Oil
Critical Illness
Oxidoreductases
Phosphofructokinases
Injections
Wounds and Injuries
Intraperitoneal Injections
Oxidants
Free Radicals
Wistar Rats
Liver Diseases
Hepatocytes
Reactive Oxygen Species

ASJC Scopus subject areas

  • Surgery

Cite this

Glutathione depletion alters hepatocellular high-energy phosphate metabolism. / Kobayashi, Takashi; Robinson, Malcolm K.; Robinson, Vickye; Derosa, Eve; Wilmore, Douglas W.; Jacobs, Danny.

In: Journal of Surgical Research, Vol. 54, No. 3, 01.01.1993, p. 189-195.

Research output: Contribution to journalArticle

Kobayashi, T, Robinson, MK, Robinson, V, Derosa, E, Wilmore, DW & Jacobs, D 1993, 'Glutathione depletion alters hepatocellular high-energy phosphate metabolism', Journal of Surgical Research, vol. 54, no. 3, pp. 189-195. https://doi.org/10.1006/jsre.1993.1030
Kobayashi, Takashi ; Robinson, Malcolm K. ; Robinson, Vickye ; Derosa, Eve ; Wilmore, Douglas W. ; Jacobs, Danny. / Glutathione depletion alters hepatocellular high-energy phosphate metabolism. In: Journal of Surgical Research. 1993 ; Vol. 54, No. 3. pp. 189-195.
@article{79502226dd8542cab5e7e3b7680cb95b,
title = "Glutathione depletion alters hepatocellular high-energy phosphate metabolism",
abstract = "Oxygen free radicals have recently been implicated as a major cause of tissue injury in critically ill patients. Glutathione (GSH) is a potent endogenous antioxidant that may be important in minimizing oxidant-induced organ damage. However, this tripeptide is depleted during severe illness. In order to determine the effect of GSH depletion on hepatic high-energy phosphate metabolism, in vivo31P magnetic resonance spectroscopy was used to measure phosphate ratios in male Wistar rats given 1 ml/kg of diethylmaleate (DEM), an agent that binds and thus depletes tissue GSH, or corn oil vehicle intraperitoneally. Spectra of the liver were obtained in noninjected animals (baseline, n = 15) and in rats 2 and 24 hr after the intraperitoneal injection of DEM (n = 20) or corn oil (control, n = 20). These spectra were used to measure hepatocellular pH, phosphomonoester to ATP (PME/ATP), and phosphodiester to ATP ratios, measures of hepatocellu]ar damage; and the inorganic phosphate (Pi)/ATP ratio, a measure of energy status. In addition, tissue GSH, phosphofructokinase, citrate synthase, and β-OH-acyl-Co-A dehydrogenase activities as well as hepatocellular ATP were measured in vitro in representative liver samples. Hepatic GSH levels were maximally depressed by 85{\%} 2 hr after the injection of DEM (6.94 ± 0.34 vs 0.94 ± 0.22 μM/g wet wt, baseline vs 2° DEM). This was associated with a marked increase in the PME/ATP and Pi/ ATP ratios by 25 and 33{\%}, respectively, and both ratios were significantly correlated with the severity of hepatic GSH depletion (r = 0.63, P < 0.001 and r = 0.42, P < 0.01, respectively). In addition, the intracellular pH decreased from 7.41 ± 0.02 to 7.33 ± 0.02 (P < 0.05) 2 hr after the injection of DEM. At this time citrate synthase and β-OH-acyl-Co-A dehydrogenase activities were significantly elevated in the GSH-depieted animals. In contrast, ATP levels did not change significantly (2.92 ± 0.07 vs 3.20 ± 0.28 μM/g wet wt, baseline vs 2° DEM) and PFK activity was similar in both groups. We conclude that (1) GSH depletion in rats alters the hepatocellular energy status primarily due to increased ATP turnover; (2) under these conditions, hepatic ATP synthesis via the oxidation of fatty acids accelerates to meet an increased energy demand; and (3) these changes in hepatocellular energetics and PME/ATP ratios may indicate early hepatocyte injury and are likely due to increased oxidative stress unveiled by GSH depletion. The GSH depletion associated with critical illness may contribute to the development of liver dysfunction in severely injured patients.",
author = "Takashi Kobayashi and Robinson, {Malcolm K.} and Vickye Robinson and Eve Derosa and Wilmore, {Douglas W.} and Danny Jacobs",
year = "1993",
month = "1",
day = "1",
doi = "10.1006/jsre.1993.1030",
language = "English (US)",
volume = "54",
pages = "189--195",
journal = "Journal of Surgical Research",
issn = "0022-4804",
publisher = "Academic Press Inc.",
number = "3",

}

TY - JOUR

T1 - Glutathione depletion alters hepatocellular high-energy phosphate metabolism

AU - Kobayashi, Takashi

AU - Robinson, Malcolm K.

AU - Robinson, Vickye

AU - Derosa, Eve

AU - Wilmore, Douglas W.

AU - Jacobs, Danny

PY - 1993/1/1

Y1 - 1993/1/1

N2 - Oxygen free radicals have recently been implicated as a major cause of tissue injury in critically ill patients. Glutathione (GSH) is a potent endogenous antioxidant that may be important in minimizing oxidant-induced organ damage. However, this tripeptide is depleted during severe illness. In order to determine the effect of GSH depletion on hepatic high-energy phosphate metabolism, in vivo31P magnetic resonance spectroscopy was used to measure phosphate ratios in male Wistar rats given 1 ml/kg of diethylmaleate (DEM), an agent that binds and thus depletes tissue GSH, or corn oil vehicle intraperitoneally. Spectra of the liver were obtained in noninjected animals (baseline, n = 15) and in rats 2 and 24 hr after the intraperitoneal injection of DEM (n = 20) or corn oil (control, n = 20). These spectra were used to measure hepatocellular pH, phosphomonoester to ATP (PME/ATP), and phosphodiester to ATP ratios, measures of hepatocellu]ar damage; and the inorganic phosphate (Pi)/ATP ratio, a measure of energy status. In addition, tissue GSH, phosphofructokinase, citrate synthase, and β-OH-acyl-Co-A dehydrogenase activities as well as hepatocellular ATP were measured in vitro in representative liver samples. Hepatic GSH levels were maximally depressed by 85% 2 hr after the injection of DEM (6.94 ± 0.34 vs 0.94 ± 0.22 μM/g wet wt, baseline vs 2° DEM). This was associated with a marked increase in the PME/ATP and Pi/ ATP ratios by 25 and 33%, respectively, and both ratios were significantly correlated with the severity of hepatic GSH depletion (r = 0.63, P < 0.001 and r = 0.42, P < 0.01, respectively). In addition, the intracellular pH decreased from 7.41 ± 0.02 to 7.33 ± 0.02 (P < 0.05) 2 hr after the injection of DEM. At this time citrate synthase and β-OH-acyl-Co-A dehydrogenase activities were significantly elevated in the GSH-depieted animals. In contrast, ATP levels did not change significantly (2.92 ± 0.07 vs 3.20 ± 0.28 μM/g wet wt, baseline vs 2° DEM) and PFK activity was similar in both groups. We conclude that (1) GSH depletion in rats alters the hepatocellular energy status primarily due to increased ATP turnover; (2) under these conditions, hepatic ATP synthesis via the oxidation of fatty acids accelerates to meet an increased energy demand; and (3) these changes in hepatocellular energetics and PME/ATP ratios may indicate early hepatocyte injury and are likely due to increased oxidative stress unveiled by GSH depletion. The GSH depletion associated with critical illness may contribute to the development of liver dysfunction in severely injured patients.

AB - Oxygen free radicals have recently been implicated as a major cause of tissue injury in critically ill patients. Glutathione (GSH) is a potent endogenous antioxidant that may be important in minimizing oxidant-induced organ damage. However, this tripeptide is depleted during severe illness. In order to determine the effect of GSH depletion on hepatic high-energy phosphate metabolism, in vivo31P magnetic resonance spectroscopy was used to measure phosphate ratios in male Wistar rats given 1 ml/kg of diethylmaleate (DEM), an agent that binds and thus depletes tissue GSH, or corn oil vehicle intraperitoneally. Spectra of the liver were obtained in noninjected animals (baseline, n = 15) and in rats 2 and 24 hr after the intraperitoneal injection of DEM (n = 20) or corn oil (control, n = 20). These spectra were used to measure hepatocellular pH, phosphomonoester to ATP (PME/ATP), and phosphodiester to ATP ratios, measures of hepatocellu]ar damage; and the inorganic phosphate (Pi)/ATP ratio, a measure of energy status. In addition, tissue GSH, phosphofructokinase, citrate synthase, and β-OH-acyl-Co-A dehydrogenase activities as well as hepatocellular ATP were measured in vitro in representative liver samples. Hepatic GSH levels were maximally depressed by 85% 2 hr after the injection of DEM (6.94 ± 0.34 vs 0.94 ± 0.22 μM/g wet wt, baseline vs 2° DEM). This was associated with a marked increase in the PME/ATP and Pi/ ATP ratios by 25 and 33%, respectively, and both ratios were significantly correlated with the severity of hepatic GSH depletion (r = 0.63, P < 0.001 and r = 0.42, P < 0.01, respectively). In addition, the intracellular pH decreased from 7.41 ± 0.02 to 7.33 ± 0.02 (P < 0.05) 2 hr after the injection of DEM. At this time citrate synthase and β-OH-acyl-Co-A dehydrogenase activities were significantly elevated in the GSH-depieted animals. In contrast, ATP levels did not change significantly (2.92 ± 0.07 vs 3.20 ± 0.28 μM/g wet wt, baseline vs 2° DEM) and PFK activity was similar in both groups. We conclude that (1) GSH depletion in rats alters the hepatocellular energy status primarily due to increased ATP turnover; (2) under these conditions, hepatic ATP synthesis via the oxidation of fatty acids accelerates to meet an increased energy demand; and (3) these changes in hepatocellular energetics and PME/ATP ratios may indicate early hepatocyte injury and are likely due to increased oxidative stress unveiled by GSH depletion. The GSH depletion associated with critical illness may contribute to the development of liver dysfunction in severely injured patients.

UR - http://www.scopus.com/inward/record.url?scp=0027530088&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0027530088&partnerID=8YFLogxK

U2 - 10.1006/jsre.1993.1030

DO - 10.1006/jsre.1993.1030

M3 - Article

VL - 54

SP - 189

EP - 195

JO - Journal of Surgical Research

JF - Journal of Surgical Research

SN - 0022-4804

IS - 3

ER -