TY - JOUR
T1 - Glomerular adaptations with normal aging and with long-term converting enzyme inhibition in rats
AU - Anderson, S.
AU - Rennke, H. G.
AU - Zatz, R.
PY - 1994
Y1 - 1994
N2 - Normal aging is accompanied by renal functional and structural deterioration. To examine the hemodynamic and growth-related mechanisms of age-associated nephron loss, as well as the potential beneficial effects of antihypertensive therapy, studies were performed in normal aging Munich- Wistar rats, and in rats receiving long-term antihypertensive therapy with the converting enzyme inhibitor (CEI) enalapril. In protocol 1, rats were treated from the age of 3 mo. Compared with young rats, untreated old rats studied at 2.5 yr of age exhibited normal blood pressure but increased glomerular capillary pressure due to a reduction in afferent arteriolar resistance. Glomerular size increased proportionately to changes in body weight, while kidney weight increased to a lesser degree. Albuminuria rose significantly after 10 mo of age and was accompanied by development of modest, but significant, glomerular sclerosis. CEI therapy from the age of 3 mo lowered systemic and glomerular capillary pressures, did not affect glomerular size, and significantly ameliorated development of albuminuria and structural injury. In protocol 2, untreated rats were compared with a treated group in which enalapril therapy was delayed until the age of 1 yr, when albuminuria was already rising. Subsequent increases in albuminuria and development of sclerosis were significantly attenuated, although not entirely prevented. These findings suggest that hemodynamic maladaptations may contribute to age-related loss of renal function in the rat and that antihypertensive therapy may serve to delay this process.
AB - Normal aging is accompanied by renal functional and structural deterioration. To examine the hemodynamic and growth-related mechanisms of age-associated nephron loss, as well as the potential beneficial effects of antihypertensive therapy, studies were performed in normal aging Munich- Wistar rats, and in rats receiving long-term antihypertensive therapy with the converting enzyme inhibitor (CEI) enalapril. In protocol 1, rats were treated from the age of 3 mo. Compared with young rats, untreated old rats studied at 2.5 yr of age exhibited normal blood pressure but increased glomerular capillary pressure due to a reduction in afferent arteriolar resistance. Glomerular size increased proportionately to changes in body weight, while kidney weight increased to a lesser degree. Albuminuria rose significantly after 10 mo of age and was accompanied by development of modest, but significant, glomerular sclerosis. CEI therapy from the age of 3 mo lowered systemic and glomerular capillary pressures, did not affect glomerular size, and significantly ameliorated development of albuminuria and structural injury. In protocol 2, untreated rats were compared with a treated group in which enalapril therapy was delayed until the age of 1 yr, when albuminuria was already rising. Subsequent increases in albuminuria and development of sclerosis were significantly attenuated, although not entirely prevented. These findings suggest that hemodynamic maladaptations may contribute to age-related loss of renal function in the rat and that antihypertensive therapy may serve to delay this process.
KW - albuminuria
KW - angiotensin
KW - angiotensin converting enzyme
KW - hypertension
KW - proteinuria
UR - http://www.scopus.com/inward/record.url?scp=0028122676&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0028122676&partnerID=8YFLogxK
U2 - 10.1152/ajprenal.1994.267.1.f35
DO - 10.1152/ajprenal.1994.267.1.f35
M3 - Article
C2 - 8048562
AN - SCOPUS:0028122676
SN - 0002-9513
VL - 267
SP - F35-F43
JO - American Journal of Physiology - Renal Fluid and Electrolyte Physiology
JF - American Journal of Physiology - Renal Fluid and Electrolyte Physiology
IS - 1 36-1
ER -