Global Inhibition with Specific Activation: How p53 and MYC Redistribute the Transcriptome in the DNA Double-Strand Break Response

Joshua R. Porter, Brian E. Fisher, Laura Baranello, Julia C. Liu, Diane M. Kambach, Zuqin Nie, Woo Seuk Koh, Ji Luo, Jayne M. Stommel, David Levens, Eric Batchelor

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

In response to stresses, cells often halt normal cellular processes, yet stress-specific pathways must bypass such inhibition to generate effective responses. We investigated how cells redistribute global transcriptional activity in response to DNA damage. We show that an oscillatory increase of p53 levels in response to double-strand breaks drives a counter-oscillatory decrease of MYC levels. Using RNA sequencing (RNA-seq) of newly synthesized transcripts, we found that p53-mediated reduction of MYC suppressed general transcription, with the most highly expressed transcripts reduced to a greater extent. In contrast, upregulation of p53 targets was relatively unaffected by MYC suppression. Reducing MYC during the DNA damage response was important for cell-fate regulation, as counteracting MYC repression reduced cell-cycle arrest and elevated apoptosis. Our study shows that global inhibition with specific activation of transcriptional pathways is important for the proper response to DNA damage; this mechanism may be a general principle used in many stress responses. Porter et al. report a mechanism by which p53 dynamics are coupled to MYC repression in response to DNA damage. The coupling generates MYC-dependent global transcription inhibition, but p53 targets bypass the inhibition. MYC repression during the damage response is important for proper regulation of the cell cycle and apoptosis.

Original languageEnglish (US)
Pages (from-to)1013-1025.e9
JournalMolecular Cell
Volume67
Issue number6
DOIs
StatePublished - Sep 21 2017
Externally publishedYes

Keywords

  • apoptosis
  • cell cycle
  • DNA damage
  • MYC
  • p53
  • transcriptome

ASJC Scopus subject areas

  • Molecular Biology
  • Cell Biology

Fingerprint Dive into the research topics of 'Global Inhibition with Specific Activation: How p53 and MYC Redistribute the Transcriptome in the DNA Double-Strand Break Response'. Together they form a unique fingerprint.

Cite this