Genetic regulation of bone mineral density in mice

Research output: Contribution to journalArticle

17 Citations (Scopus)

Abstract

Peak bone mass is a major determinant of risk of osteoporotic fracture. Family and twin studies have found a strong genetic component to the determination of bone mineral density (BMD). However, BMD is a complex trait whose expression is confounded by environmental influences and polygenic inheritance. The number, locations and effects of the individual genes contributing to natural variation in this trait are all unknown. The extreme difficulty of dissecting out environmental factors from genetic ones in humans has motivated the investigation of animal models. Genetically distinct animal strains raised under strict environmental control are critical tools for defining genetic regulation. The availability of inbred strains, combined with its relative fecundity, has established the mouse as the best model system for the study of mammalian genetics and physiology. Importantly, genes identified in murine analyses can usually be readily mapped to particular human chromosomal regions because of the high degree of synteny that exists between the mouse and human genomes. We employed quantitative trait locus (QTL) analysis to examine peak BMD in 24 recombinant inbred (RI) mouse strains, derived from a cross between C57BL/6 (B6) and DBA/2 (D2) progenitors (BXD RI). The distribution of BMD values among these strains clearly indicated the presence of strong genetic influences, with an estimated narrow sense heritability of 35%. The differences in peak whole body BMD in the BXD strains were integrated with a large database of genetic markers previously defined in the RI BXD strains to generate chromosome map sites for QTL locations. This QTL analysis provisionally identified a number of chromosomal sites linked to BMD. In the second phase of our BMD QTL mapping efforts, we used three independent mouse populations (all derived from B6 and D2 progenitor strains) to confirm and narrow the genetic locations of 4 QTLs (on chromosomes 1, 2, 4, and 11) that strongly influence the acquisition of peak BMD in mice. Using a novel, fine-mapping approach (recombinant inbred segregation testing), we have succeeded in narrowing two of the BMD-related chromosomal regions and in the process eliminated a number of candidate genes. The homologous regions in the human genome for each of these murine QTLs have been identified in recent human genetic studies. In light of this, we believe that findings in mice should aid in the identification of specific candidate genes for study in humans.

Original languageEnglish (US)
Pages (from-to)232-236
Number of pages5
JournalJournal of Musculoskeletal Neuronal Interactions
Volume2
Issue number3
StatePublished - 2002

Fingerprint

Bone Density
Quantitative Trait Loci
Human Genome
Multifactorial Inheritance
Genes
Synteny
Twin Studies
Inbred Strains Mice
Osteoporotic Fractures
Chromosomes, Human, Pair 2
Chromosomes, Human, Pair 1
Medical Genetics
Genetic Association Studies
Genetic Markers
Fertility
Animal Models
Chromosomes
Databases
Bone and Bones
Population

Keywords

  • Bone mineral density
  • Genetics
  • Heredity
  • Inbred strain
  • Osteoporosis
  • Quantitative trait

ASJC Scopus subject areas

  • Neuroscience(all)
  • Endocrinology

Cite this

Genetic regulation of bone mineral density in mice. / Klein, Robert.

In: Journal of Musculoskeletal Neuronal Interactions, Vol. 2, No. 3, 2002, p. 232-236.

Research output: Contribution to journalArticle

@article{510b461bc067477287348c16f8d11708,
title = "Genetic regulation of bone mineral density in mice",
abstract = "Peak bone mass is a major determinant of risk of osteoporotic fracture. Family and twin studies have found a strong genetic component to the determination of bone mineral density (BMD). However, BMD is a complex trait whose expression is confounded by environmental influences and polygenic inheritance. The number, locations and effects of the individual genes contributing to natural variation in this trait are all unknown. The extreme difficulty of dissecting out environmental factors from genetic ones in humans has motivated the investigation of animal models. Genetically distinct animal strains raised under strict environmental control are critical tools for defining genetic regulation. The availability of inbred strains, combined with its relative fecundity, has established the mouse as the best model system for the study of mammalian genetics and physiology. Importantly, genes identified in murine analyses can usually be readily mapped to particular human chromosomal regions because of the high degree of synteny that exists between the mouse and human genomes. We employed quantitative trait locus (QTL) analysis to examine peak BMD in 24 recombinant inbred (RI) mouse strains, derived from a cross between C57BL/6 (B6) and DBA/2 (D2) progenitors (BXD RI). The distribution of BMD values among these strains clearly indicated the presence of strong genetic influences, with an estimated narrow sense heritability of 35{\%}. The differences in peak whole body BMD in the BXD strains were integrated with a large database of genetic markers previously defined in the RI BXD strains to generate chromosome map sites for QTL locations. This QTL analysis provisionally identified a number of chromosomal sites linked to BMD. In the second phase of our BMD QTL mapping efforts, we used three independent mouse populations (all derived from B6 and D2 progenitor strains) to confirm and narrow the genetic locations of 4 QTLs (on chromosomes 1, 2, 4, and 11) that strongly influence the acquisition of peak BMD in mice. Using a novel, fine-mapping approach (recombinant inbred segregation testing), we have succeeded in narrowing two of the BMD-related chromosomal regions and in the process eliminated a number of candidate genes. The homologous regions in the human genome for each of these murine QTLs have been identified in recent human genetic studies. In light of this, we believe that findings in mice should aid in the identification of specific candidate genes for study in humans.",
keywords = "Bone mineral density, Genetics, Heredity, Inbred strain, Osteoporosis, Quantitative trait",
author = "Robert Klein",
year = "2002",
language = "English (US)",
volume = "2",
pages = "232--236",
journal = "Journal of Musculoskeletal Neuronal Interactions",
issn = "1108-7161",
publisher = "International Society of Musculoskeletal and Neuronal Interactions",
number = "3",

}

TY - JOUR

T1 - Genetic regulation of bone mineral density in mice

AU - Klein, Robert

PY - 2002

Y1 - 2002

N2 - Peak bone mass is a major determinant of risk of osteoporotic fracture. Family and twin studies have found a strong genetic component to the determination of bone mineral density (BMD). However, BMD is a complex trait whose expression is confounded by environmental influences and polygenic inheritance. The number, locations and effects of the individual genes contributing to natural variation in this trait are all unknown. The extreme difficulty of dissecting out environmental factors from genetic ones in humans has motivated the investigation of animal models. Genetically distinct animal strains raised under strict environmental control are critical tools for defining genetic regulation. The availability of inbred strains, combined with its relative fecundity, has established the mouse as the best model system for the study of mammalian genetics and physiology. Importantly, genes identified in murine analyses can usually be readily mapped to particular human chromosomal regions because of the high degree of synteny that exists between the mouse and human genomes. We employed quantitative trait locus (QTL) analysis to examine peak BMD in 24 recombinant inbred (RI) mouse strains, derived from a cross between C57BL/6 (B6) and DBA/2 (D2) progenitors (BXD RI). The distribution of BMD values among these strains clearly indicated the presence of strong genetic influences, with an estimated narrow sense heritability of 35%. The differences in peak whole body BMD in the BXD strains were integrated with a large database of genetic markers previously defined in the RI BXD strains to generate chromosome map sites for QTL locations. This QTL analysis provisionally identified a number of chromosomal sites linked to BMD. In the second phase of our BMD QTL mapping efforts, we used three independent mouse populations (all derived from B6 and D2 progenitor strains) to confirm and narrow the genetic locations of 4 QTLs (on chromosomes 1, 2, 4, and 11) that strongly influence the acquisition of peak BMD in mice. Using a novel, fine-mapping approach (recombinant inbred segregation testing), we have succeeded in narrowing two of the BMD-related chromosomal regions and in the process eliminated a number of candidate genes. The homologous regions in the human genome for each of these murine QTLs have been identified in recent human genetic studies. In light of this, we believe that findings in mice should aid in the identification of specific candidate genes for study in humans.

AB - Peak bone mass is a major determinant of risk of osteoporotic fracture. Family and twin studies have found a strong genetic component to the determination of bone mineral density (BMD). However, BMD is a complex trait whose expression is confounded by environmental influences and polygenic inheritance. The number, locations and effects of the individual genes contributing to natural variation in this trait are all unknown. The extreme difficulty of dissecting out environmental factors from genetic ones in humans has motivated the investigation of animal models. Genetically distinct animal strains raised under strict environmental control are critical tools for defining genetic regulation. The availability of inbred strains, combined with its relative fecundity, has established the mouse as the best model system for the study of mammalian genetics and physiology. Importantly, genes identified in murine analyses can usually be readily mapped to particular human chromosomal regions because of the high degree of synteny that exists between the mouse and human genomes. We employed quantitative trait locus (QTL) analysis to examine peak BMD in 24 recombinant inbred (RI) mouse strains, derived from a cross between C57BL/6 (B6) and DBA/2 (D2) progenitors (BXD RI). The distribution of BMD values among these strains clearly indicated the presence of strong genetic influences, with an estimated narrow sense heritability of 35%. The differences in peak whole body BMD in the BXD strains were integrated with a large database of genetic markers previously defined in the RI BXD strains to generate chromosome map sites for QTL locations. This QTL analysis provisionally identified a number of chromosomal sites linked to BMD. In the second phase of our BMD QTL mapping efforts, we used three independent mouse populations (all derived from B6 and D2 progenitor strains) to confirm and narrow the genetic locations of 4 QTLs (on chromosomes 1, 2, 4, and 11) that strongly influence the acquisition of peak BMD in mice. Using a novel, fine-mapping approach (recombinant inbred segregation testing), we have succeeded in narrowing two of the BMD-related chromosomal regions and in the process eliminated a number of candidate genes. The homologous regions in the human genome for each of these murine QTLs have been identified in recent human genetic studies. In light of this, we believe that findings in mice should aid in the identification of specific candidate genes for study in humans.

KW - Bone mineral density

KW - Genetics

KW - Heredity

KW - Inbred strain

KW - Osteoporosis

KW - Quantitative trait

UR - http://www.scopus.com/inward/record.url?scp=0036124089&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0036124089&partnerID=8YFLogxK

M3 - Article

C2 - 15758441

AN - SCOPUS:0036124089

VL - 2

SP - 232

EP - 236

JO - Journal of Musculoskeletal Neuronal Interactions

JF - Journal of Musculoskeletal Neuronal Interactions

SN - 1108-7161

IS - 3

ER -