Genetic predisposition and parameters of malignant progression in K14- HPV16 transgenic mice

Lisa Coussens, Douglas Hanahan, Jeffrey M. Arbeit

Research output: Contribution to journalArticle

159 Citations (Scopus)

Abstract

Reproducible multi-stage progression to invasive squamous carcinoma of the epidermis has been achieved in transgenic mice expressing the HPV16 early-region genes, including the E6/E7 oncogenes, under the control of the human keratin-14 promoter/enhancer. Although 100% of K14-HPV16 transgenic animals develop hyperplastic and/or dysplastic lesions in several inbred backgrounds, including C57BL/6, BALB/c, and SSIN/SENCAR, only mice backcrossed into the FVB/n background progress to malignant squamous cell carcinomas of two pathological grades, well differentiated and moderate/poorly differentiated (WDSC or MPDSC, respectively), each displaying characteristic patterns of malignant behavior. WDSCs typically arise within the epidermis of the ear and invade deeply into the underlying dermis but fail to metastasize, whereas MPDSCs develop on the chest and truncal skin and invariably metastasize to regional lymph nodes. The transition to the malignant state, in 21% of FVB/n transgenic mice, is characterized by alteration of the repertoire of keratin intermediate filament proteins expressed within neoplastic epidermis, such that WDSCs maintain expression of keratins common to terminally differentiating stratified keratinocytes (K10), whereas MPDSCs are distinguished from WDSCs by activation of embryonic and mucosal keratins (K13, K8, and K19). Precursor hyperplastic and dysplastic lesions are characterized by a progressively increased proliferative index, striking morphological alterations in keratinocyte cell-cell and cell-matrix interactions, and extensive remodeling of the underlying dermal stroma. Remarkably, this extensive stromal remodeling, which may facilitate both angiogenesis and eventual tumor cell invasion, develops early at the dysplastic stage in all animals well before malignant conversion.

Original languageEnglish (US)
Pages (from-to)1899-1917
Number of pages19
JournalAmerican Journal of Pathology
Volume149
Issue number6
StatePublished - 1996
Externally publishedYes

Fingerprint

Genetic Predisposition to Disease
Keratins
Epidermis
Transgenic Mice
Keratinocytes
Squamous Cell Carcinoma
Inbred SENCAR Mouse
Intermediate Filament Proteins
Skin
Genetically Modified Animals
Dermis
Oncogenes
Cell Communication
Ear
Thorax
Lymph Nodes
Genes
Neoplasms

ASJC Scopus subject areas

  • Pathology and Forensic Medicine

Cite this

Genetic predisposition and parameters of malignant progression in K14- HPV16 transgenic mice. / Coussens, Lisa; Hanahan, Douglas; Arbeit, Jeffrey M.

In: American Journal of Pathology, Vol. 149, No. 6, 1996, p. 1899-1917.

Research output: Contribution to journalArticle

@article{d3af1dcc69f6465f8e1d2f7211c0ce16,
title = "Genetic predisposition and parameters of malignant progression in K14- HPV16 transgenic mice",
abstract = "Reproducible multi-stage progression to invasive squamous carcinoma of the epidermis has been achieved in transgenic mice expressing the HPV16 early-region genes, including the E6/E7 oncogenes, under the control of the human keratin-14 promoter/enhancer. Although 100{\%} of K14-HPV16 transgenic animals develop hyperplastic and/or dysplastic lesions in several inbred backgrounds, including C57BL/6, BALB/c, and SSIN/SENCAR, only mice backcrossed into the FVB/n background progress to malignant squamous cell carcinomas of two pathological grades, well differentiated and moderate/poorly differentiated (WDSC or MPDSC, respectively), each displaying characteristic patterns of malignant behavior. WDSCs typically arise within the epidermis of the ear and invade deeply into the underlying dermis but fail to metastasize, whereas MPDSCs develop on the chest and truncal skin and invariably metastasize to regional lymph nodes. The transition to the malignant state, in 21{\%} of FVB/n transgenic mice, is characterized by alteration of the repertoire of keratin intermediate filament proteins expressed within neoplastic epidermis, such that WDSCs maintain expression of keratins common to terminally differentiating stratified keratinocytes (K10), whereas MPDSCs are distinguished from WDSCs by activation of embryonic and mucosal keratins (K13, K8, and K19). Precursor hyperplastic and dysplastic lesions are characterized by a progressively increased proliferative index, striking morphological alterations in keratinocyte cell-cell and cell-matrix interactions, and extensive remodeling of the underlying dermal stroma. Remarkably, this extensive stromal remodeling, which may facilitate both angiogenesis and eventual tumor cell invasion, develops early at the dysplastic stage in all animals well before malignant conversion.",
author = "Lisa Coussens and Douglas Hanahan and Arbeit, {Jeffrey M.}",
year = "1996",
language = "English (US)",
volume = "149",
pages = "1899--1917",
journal = "American Journal of Pathology",
issn = "0002-9440",
publisher = "Elsevier Inc.",
number = "6",

}

TY - JOUR

T1 - Genetic predisposition and parameters of malignant progression in K14- HPV16 transgenic mice

AU - Coussens, Lisa

AU - Hanahan, Douglas

AU - Arbeit, Jeffrey M.

PY - 1996

Y1 - 1996

N2 - Reproducible multi-stage progression to invasive squamous carcinoma of the epidermis has been achieved in transgenic mice expressing the HPV16 early-region genes, including the E6/E7 oncogenes, under the control of the human keratin-14 promoter/enhancer. Although 100% of K14-HPV16 transgenic animals develop hyperplastic and/or dysplastic lesions in several inbred backgrounds, including C57BL/6, BALB/c, and SSIN/SENCAR, only mice backcrossed into the FVB/n background progress to malignant squamous cell carcinomas of two pathological grades, well differentiated and moderate/poorly differentiated (WDSC or MPDSC, respectively), each displaying characteristic patterns of malignant behavior. WDSCs typically arise within the epidermis of the ear and invade deeply into the underlying dermis but fail to metastasize, whereas MPDSCs develop on the chest and truncal skin and invariably metastasize to regional lymph nodes. The transition to the malignant state, in 21% of FVB/n transgenic mice, is characterized by alteration of the repertoire of keratin intermediate filament proteins expressed within neoplastic epidermis, such that WDSCs maintain expression of keratins common to terminally differentiating stratified keratinocytes (K10), whereas MPDSCs are distinguished from WDSCs by activation of embryonic and mucosal keratins (K13, K8, and K19). Precursor hyperplastic and dysplastic lesions are characterized by a progressively increased proliferative index, striking morphological alterations in keratinocyte cell-cell and cell-matrix interactions, and extensive remodeling of the underlying dermal stroma. Remarkably, this extensive stromal remodeling, which may facilitate both angiogenesis and eventual tumor cell invasion, develops early at the dysplastic stage in all animals well before malignant conversion.

AB - Reproducible multi-stage progression to invasive squamous carcinoma of the epidermis has been achieved in transgenic mice expressing the HPV16 early-region genes, including the E6/E7 oncogenes, under the control of the human keratin-14 promoter/enhancer. Although 100% of K14-HPV16 transgenic animals develop hyperplastic and/or dysplastic lesions in several inbred backgrounds, including C57BL/6, BALB/c, and SSIN/SENCAR, only mice backcrossed into the FVB/n background progress to malignant squamous cell carcinomas of two pathological grades, well differentiated and moderate/poorly differentiated (WDSC or MPDSC, respectively), each displaying characteristic patterns of malignant behavior. WDSCs typically arise within the epidermis of the ear and invade deeply into the underlying dermis but fail to metastasize, whereas MPDSCs develop on the chest and truncal skin and invariably metastasize to regional lymph nodes. The transition to the malignant state, in 21% of FVB/n transgenic mice, is characterized by alteration of the repertoire of keratin intermediate filament proteins expressed within neoplastic epidermis, such that WDSCs maintain expression of keratins common to terminally differentiating stratified keratinocytes (K10), whereas MPDSCs are distinguished from WDSCs by activation of embryonic and mucosal keratins (K13, K8, and K19). Precursor hyperplastic and dysplastic lesions are characterized by a progressively increased proliferative index, striking morphological alterations in keratinocyte cell-cell and cell-matrix interactions, and extensive remodeling of the underlying dermal stroma. Remarkably, this extensive stromal remodeling, which may facilitate both angiogenesis and eventual tumor cell invasion, develops early at the dysplastic stage in all animals well before malignant conversion.

UR - http://www.scopus.com/inward/record.url?scp=0029844435&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0029844435&partnerID=8YFLogxK

M3 - Article

C2 - 8952526

AN - SCOPUS:0029844435

VL - 149

SP - 1899

EP - 1917

JO - American Journal of Pathology

JF - American Journal of Pathology

SN - 0002-9440

IS - 6

ER -