Genetic analysis of vertebrate sensory hair cell mechanosensation: The zebrafish circler mutants

Teresa Nicolson, Alfons Rüsch, Rainer W. Friedrich, Michael Granato, Johann Peter Ruppersberg, Christiane Nüsslein-Volhard

Research output: Contribution to journalArticlepeer-review

242 Scopus citations

Abstract

The molecular basis of sensory hair cell mechanotransduction is largely unknown. In order to identify genes that are essential for mechanosensory hair cell function, we characterized a group of recently isolated zebrafish motility mutants. These mutants are defective in balance and swim in circles but have no obvious morphological defects. We examined the mutants using calcium imaging of acoustic-vibrational and tactile escape responses, high resolution microscopy of sensory neuroepithelia in live larvae, and recordings of extracellular hair cell potentials (microphonics). Based on the analyses, we have identified several classes of genes. Mutations in sputnik and mariner affect hair bundle integrity. Mutant astronaut and cosmonaut hair cells have relatively normal microphonics and thus appear to affect events downstream of mechanotransduction. Mutant orbiter, mercury, and gemini larvae have normal hair cell morphology and yet do not respond to acoustic- vibrational stimuli the microphonics of lateral line hair cells or orbiter, mercury, and gemini larvae are absent or strongly reduced. Therefore, these genes may encode components of the transduction apparatus.

Original languageEnglish (US)
Pages (from-to)271-283
Number of pages13
JournalNeuron
Volume20
Issue number2
DOIs
StatePublished - Feb 1998
Externally publishedYes

ASJC Scopus subject areas

  • General Neuroscience

Fingerprint

Dive into the research topics of 'Genetic analysis of vertebrate sensory hair cell mechanosensation: The zebrafish circler mutants'. Together they form a unique fingerprint.

Cite this