Gas-Stabilizing Sub-100 nm Mesoporous Silica Nanoparticles for Ultrasound Theranostics

Jose Montoya Mira, Lucy Wu, Sinan Sabuncu, Ajay Sapre, Fehmi Civitci, Stuart Ibsen, Sadik Esener, Adem Yildirim

Research output: Contribution to journalArticlepeer-review

Abstract

Recent studies have demonstrated that gas-stabilizing particles can generate cavitating micron-sized bubbles when exposed to ultrasound, offering excellent application potential, including ultrasound imaging, drug delivery, and tumor ablation. However, the majority of the reported gas-stabilizing particles are relatively large (>200 nm), and smaller particles require high acoustic pressures to promote cavitation. Here, this paper reports the preparation of sub-100 nm gas-stabilizing nanoparticles (GSNs) that can initiate cavitation at low acoustic intensities, which can be delivered using a conventional medical ultrasound imaging system. The highly echogenic GSNs (F127-hMSN) were prepared by carefully engineering the surfaces of ∼50 nm mesoporous silica nanoparticles. It was demonstrated that the F127-hMSNs could be continuously imaged with ultrasound in buffer or biological solutions or agarose phantoms for up to 20 min. Also, the F127-hMSN can be stored in phosphate-buffered saline for at least a month with no loss in ultrasound responsiveness. The particles significantly degraded when diluted in simulated body fluids, indicating possible biodegradation of the F127-hMSNs in vivo. Furthermore, at ultrasound imaging conditions, F127-hMSNs did not cause detectable cell death, supporting the potential safety of these particles. Finally, strong cavitation activity generation by the F127-hMSNs under high-intensity focused ultrasound insonation was demonstrated and applied to effectively ablate cancer cells.

Original languageEnglish (US)
Pages (from-to)24762-24772
Number of pages11
JournalACS Omega
Volume5
Issue number38
DOIs
StatePublished - Sep 29 2020

ASJC Scopus subject areas

  • Chemistry(all)
  • Chemical Engineering(all)

Fingerprint Dive into the research topics of 'Gas-Stabilizing Sub-100 nm Mesoporous Silica Nanoparticles for Ultrasound Theranostics'. Together they form a unique fingerprint.

Cite this