Further Applications of Advanced Methods to Infer Causes in the Study of Physiologic Childbirth

Research output: Contribution to journalReview article

2 Scopus citations

Abstract

The causal inference framework and related methods have emerged as vital within epidemiology. This framework and associated analytic approaches facilitate the conduct of valid science using observational data. These approaches have helped catalyze knowledge development using existing data and also have addressed questions for which randomized controlled trials are neither feasible nor ethical. The study of normal childbearing processes and women who are medically low risk may benefit from more direct and deliberate engagement with the process of inferring causes and the use of methods appropriate for this undertaking. This article is the second in a series of 3 that review scientific challenges encountered in researching pregnancy, labor, and birth and approaches for addressing them. This article introduces 2 methods for causal inference (g-computation and instrumental variable analysis) to an audience of clinician-scientists, including references with further details. The causal inference framework and associated methods hold promise for generating strong, broadly representative, and actionable science to improve the outcomes of women who are medically low risk and their children.

Original languageEnglish (US)
Pages (from-to)710-720
Number of pages11
JournalJournal of Midwifery and Women's Health
Volume63
Issue number6
DOIs
Publication statusPublished - Nov 1 2018
Externally publishedYes

    Fingerprint

Keywords

  • assumptions
  • causal inference framework
  • g-computation
  • instrumental variables
  • midwifery science
  • observational studies
  • physiologic childbearing science
  • secondary data analysis

ASJC Scopus subject areas

  • Obstetrics and Gynecology
  • Maternity and Midwifery

Cite this