Fringe‐scan flow cytometry

J. Mullikin, R. Norgren, J. Lucas, J. Gray

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

We describe the development of a scanning flow cytometer capable of measuring the distribution of fluorescent dye along objects with a spatial resolution of 0.7 μm. The heart of this instrument, called a fringe‐scan flow cytometer, is an interference field (i.e., a series of intense planes of illumination) produced by the intersection of two laser beams. Fluorescence profiles (i.e., records showing the intensity of fluorescence measured at 20 ns intervals) are recorded during the passage of objects through the fringe field. The shape of the fringe field is determined by recording light scatter profiles as 0.25 μm diameter microspheres traverse the field. The distribution of the fluorescent dye along each object passing through the fringe field is estimated from the recorded fluorescence profile using Fourier deconvolution. We show that the distribution of fluorescent dye along microsphere doublets and along propidium iodide stained human chromosomes can be determined accurately using fringe‐scan flow cytometry. The accuracy of fringe‐scan shape analysis was determined by comparing fluorescence profiles estimated from fringe‐scan profiles for microspheres and chromosomes with fluorescence profiles for the same objects measured using slit‐scan flow cytometry.

Original languageEnglish (US)
Pages (from-to)111-120
Number of pages10
JournalCytometry
Volume9
Issue number2
DOIs
StatePublished - Mar 1988
Externally publishedYes

Keywords

  • Chromosomes
  • centromeric index
  • deconvolution
  • slit‐scan

ASJC Scopus subject areas

  • Pathology and Forensic Medicine
  • Biophysics
  • Hematology
  • Endocrinology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Fringe‐scan flow cytometry'. Together they form a unique fingerprint.

Cite this