TY - JOUR
T1 - Fabrication of Tapered Fluidic Microchannels Conducive to Angiogenic Sprouting within Gelatin Methacryloyl Hydrogels
AU - Qi, Yubingqing
AU - Zou, Ting
AU - Dissanayaka, Waruna Lakmal
AU - Wong, Hai Ming
AU - Bertassoni, Luiz E.
AU - Zhang, Chengfei
N1 - Funding Information:
Supported by the General Research Fund grants from the Research Grants Council of Hong Kong (grant nos. 17112717 and 17111619 ) (C.Z.).
Publisher Copyright:
© 2020 American Association of Endodontists
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2021/1
Y1 - 2021/1
N2 - Introduction: The transplantation of stem cells/tissue constructs into root canal space is a promising strategy for regenerating lost pulp tissue. However, the root canal system, which is cone shaped with a taper from the larger coronal end to the smaller apical end, limits the vascular supply and, therefore, the regenerative capacity. The current study aimed to fabricate built-in microchannels with different tapers to explore various approaches to endothelialize these microchannels. Methods: The fluidic microchannels with varying tapers (parallel, 0.04, and 0.06) were fabricated within gelatin methacryloyl (GelMA) hydrogel (with or without stem cell from the apical papilla [SCAP] encapsulation) of different concentrations (5%, 7.5%, and 10% [w/v]). Green fluorescent protein–expressing human umbilical vein endothelial cells (HUVECs-GFP) were seeded alone or with SCAPs in coculture into these microchannels. Angiogenic sprouting was assessed by fluorescence and a confocal microscope and ImageJ software (National Institutes of Health, Bethesda, MD). Immunostaining was conducted to illustrate monolayer formation. Data were statistically analyzed by 1-way/2-way analysis of variance. Results: HUVEC-only inoculation formed an endothelial monolayer inside the microchannel without angiogenic sprouting. HUVECs-GFP/SCAPs cocultured at a 1:1 ratio produced the longest sprouting compared with the other 3 ratios. The average length of the sprouting in the 0.04 taper microchannel was significantly longer compared with that in the parallel and 0.06 taper microchannels. Significant differences in HUVEC-GFP sprouting were observed in 5% GelMA hydrogel. Encapsulation of SCAPs within hydrogel further stimulated the sprouting of HUVECs. Conclusions: The coculture of SCAPs and HUVECs-GFP at a ratio of 1:1 in 0.04 taper fluidic microchannels fabricated with 5% (w/v) GelMA hydrogel with SCAPs encapsulated was found to be the optimal condition to enhance angiogenesis inside tapered microchannels.
AB - Introduction: The transplantation of stem cells/tissue constructs into root canal space is a promising strategy for regenerating lost pulp tissue. However, the root canal system, which is cone shaped with a taper from the larger coronal end to the smaller apical end, limits the vascular supply and, therefore, the regenerative capacity. The current study aimed to fabricate built-in microchannels with different tapers to explore various approaches to endothelialize these microchannels. Methods: The fluidic microchannels with varying tapers (parallel, 0.04, and 0.06) were fabricated within gelatin methacryloyl (GelMA) hydrogel (with or without stem cell from the apical papilla [SCAP] encapsulation) of different concentrations (5%, 7.5%, and 10% [w/v]). Green fluorescent protein–expressing human umbilical vein endothelial cells (HUVECs-GFP) were seeded alone or with SCAPs in coculture into these microchannels. Angiogenic sprouting was assessed by fluorescence and a confocal microscope and ImageJ software (National Institutes of Health, Bethesda, MD). Immunostaining was conducted to illustrate monolayer formation. Data were statistically analyzed by 1-way/2-way analysis of variance. Results: HUVEC-only inoculation formed an endothelial monolayer inside the microchannel without angiogenic sprouting. HUVECs-GFP/SCAPs cocultured at a 1:1 ratio produced the longest sprouting compared with the other 3 ratios. The average length of the sprouting in the 0.04 taper microchannel was significantly longer compared with that in the parallel and 0.06 taper microchannels. Significant differences in HUVEC-GFP sprouting were observed in 5% GelMA hydrogel. Encapsulation of SCAPs within hydrogel further stimulated the sprouting of HUVECs. Conclusions: The coculture of SCAPs and HUVECs-GFP at a ratio of 1:1 in 0.04 taper fluidic microchannels fabricated with 5% (w/v) GelMA hydrogel with SCAPs encapsulated was found to be the optimal condition to enhance angiogenesis inside tapered microchannels.
KW - Angiogenic sprouting
KW - fluidic microchannels
KW - GelMA hydrogel
KW - prevascularization
UR - http://www.scopus.com/inward/record.url?scp=85096542827&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85096542827&partnerID=8YFLogxK
U2 - 10.1016/j.joen.2020.08.026
DO - 10.1016/j.joen.2020.08.026
M3 - Article
C2 - 33045266
AN - SCOPUS:85096542827
SN - 0099-2399
VL - 47
SP - 52
EP - 61
JO - Journal of Endodontics
JF - Journal of Endodontics
IS - 1
ER -