Fabrication of photonic transfer DNA-quantum dot nanostructures

M. J. Heller, B. Sullivan, D. Dehlinger

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

The fabrication of viable linear DNA photonic/electronic transfer nanostructures is an important prerequisite for the subsequent self-assembly into higher-order 2D/3D devices, structures and materials (high density memory, photonic antennas, nanoscale "fiber optics", nanocomputers, nano-sensors etc.). Unfortunately, it is very difficult to maintain the self-assembling and self-recognition properties of derivatized molecules such as biotin functionalized DNA sequences, when attempting to further derivatize the structure with multiply functionalized nanoparticles (streptavidin-quantum dots, gold nanoparticles, fluorescent polymer nanoparticles). Generally, overwhelming intra- and intermolecular crosslinking reactions prevent the formation of viable linear structures. Our goal is the development of nanofabrication techniques which will allow quantum dot functionalized linear DNA chains to be constructed without the need for complex chemical blocking group procedures.

Original languageEnglish (US)
Title of host publication2005 NSTI Nanotechnology Conference and Trade Show - NSTI Nanotech 2005 Technical Proceedings
EditorsM. Laudon, B. Romanowicz
Pages769-772
Number of pages4
StatePublished - 2005
Externally publishedYes
Event2005 NSTI Nanotechnology Conference and Trade Show - NSTI Nanotech 2005 - Anaheim, CA, United States
Duration: May 8 2005May 12 2005

Publication series

Name2005 NSTI Nanotechnology Conference and Trade Show - NSTI Nanotech 2005 Technical Proceedings

Conference

Conference2005 NSTI Nanotechnology Conference and Trade Show - NSTI Nanotech 2005
Country/TerritoryUnited States
CityAnaheim, CA
Period5/8/055/12/05

Keywords

  • DNA
  • Nanoelectronics
  • Nanofabrication
  • Nanophotonics
  • Nanopores
  • Quantum dots
  • Self-assembly

ASJC Scopus subject areas

  • General Engineering

Fingerprint

Dive into the research topics of 'Fabrication of photonic transfer DNA-quantum dot nanostructures'. Together they form a unique fingerprint.

Cite this