Expression of epidermal growth factor receptor changes in the hypothalamus during the onset of female puberty

Ying Jun Ma, Diane F. Hill, Marie Pierre Junier, Maria E. Costa, Stephen E. Felder, Sergio Ojeda

    Research output: Contribution to journalArticle

    85 Citations (Scopus)

    Abstract

    Recent findings have led to the concept that transforming growth factor alpha (TGFα) contributes to the neuroendocrine regulation of female puberty by stimulating the release of luteinizing hormone-releasing hormone (LHRH), the neurohormone controlling sexual development. It was postulated that this effect is mediated by epidermal growth factor receptors (EGFR) and that EGFR may not be located on LHRH neurons, so that TGFα-induced LHRH release would require an intermediate cell-to-cell interaction, presumably of glial- neuronal nature. The present study was undertaken to characterize the presence of EGFR in rat hypothalamus and to determine if changes in EGFR gene expression and EGFR protein occur at the time of puberty. RNA blot hybridization demonstrated that the hypothalamus expresses all mRNA species known to encode EGFR. RNase protection assays revealed that alternative splicing of the EGFR primary mRNA transcript occurs in the hypothalamus and produces a predominant transcript encoding the full-length EGFR and a much less abundant, shorter mRNA encoding a truncated, and presumably secreted form of EGFR. EGFR-like immunoreactive material was found in several hypothalamic regions including the organum vasculosum of the lamina terminalis, supraoptic, suprachiasmatic, and paraventricular nuclei, ependymal cells lining the third ventricle, some astrocytes associated with blood vessels, astrocytes of the pial surface, and tanycytes and glial cells of the median eminence (ME). Low levels of EGFR mRNA were detected by hybridization histochemistry in cells of the same areas containing EGFR-like immunoreactivity. Double-immunohistochemistry revealed that even though LHRH neurons are in close proximity to EGFR-positive cells, they do not contain EGFR. In the ME, EGFR-immunonegative LHRH nerve terminals tightly coexist with EGFR-positive cells, presumably tanycytes and glial astrocytes. EGFR mRNA levels measured by quantitative reverse transcription-polymerase chain reaction assay (RT-PCR) in the ME-arcuate nucleus region at the time of puberty decreased in the morning of the first proestrus, i.e., preceding the first preovulatory surge of gonadotropins, and rebounded at the time of the surge. Functional EGFR protein levels, detected by the ability of the receptor to autophosphorylate in response to ligand or divalent antibody- induced activation, changed in a similar manner at the time of puberty. No such changes were observed in the cerebellum, a brain region irrelevant to neuroendocrine reproductive control. These results demonstrate the existence of EGF receptors in the prepubertal female rat hypothalamus and suggest that changes in EGFR gene expression and biologically active EGFR protein contributes to the neuroendocrine process underlying the first preovulatory surge of gonadotropins. The results also support the view that the stimulatory effect of TGFα/EGF on LHRH secretion is not exerted directly on LHRH neurons but rather through intermediate, EGFR-bearing cells.

    Original languageEnglish (US)
    Pages (from-to)246-262
    Number of pages17
    JournalMolecular and Cellular Neurosciences
    Volume5
    Issue number3
    DOIs
    StatePublished - 1994

    Fingerprint

    Puberty
    Epidermal Growth Factor Receptor
    Hypothalamus
    Gonadotropin-Releasing Hormone
    Median Eminence
    Transforming Growth Factor alpha
    Messenger RNA
    Neuroglia
    Astrocytes
    ErbB Receptors
    Ependymoglial Cells
    erbB-1 Genes
    Gonadotropins
    Neurons
    Gene Expression
    Proestrus
    Supraoptic Nucleus
    Arcuate Nucleus of Hypothalamus
    Sexual Development
    Suprachiasmatic Nucleus

    ASJC Scopus subject areas

    • Molecular Biology
    • Cellular and Molecular Neuroscience
    • Developmental Neuroscience

    Cite this

    Expression of epidermal growth factor receptor changes in the hypothalamus during the onset of female puberty. / Ma, Ying Jun; Hill, Diane F.; Junier, Marie Pierre; Costa, Maria E.; Felder, Stephen E.; Ojeda, Sergio.

    In: Molecular and Cellular Neurosciences, Vol. 5, No. 3, 1994, p. 246-262.

    Research output: Contribution to journalArticle

    Ma, Ying Jun ; Hill, Diane F. ; Junier, Marie Pierre ; Costa, Maria E. ; Felder, Stephen E. ; Ojeda, Sergio. / Expression of epidermal growth factor receptor changes in the hypothalamus during the onset of female puberty. In: Molecular and Cellular Neurosciences. 1994 ; Vol. 5, No. 3. pp. 246-262.
    @article{da345415ba7e4df5a1175899cb050bd7,
    title = "Expression of epidermal growth factor receptor changes in the hypothalamus during the onset of female puberty",
    abstract = "Recent findings have led to the concept that transforming growth factor alpha (TGFα) contributes to the neuroendocrine regulation of female puberty by stimulating the release of luteinizing hormone-releasing hormone (LHRH), the neurohormone controlling sexual development. It was postulated that this effect is mediated by epidermal growth factor receptors (EGFR) and that EGFR may not be located on LHRH neurons, so that TGFα-induced LHRH release would require an intermediate cell-to-cell interaction, presumably of glial- neuronal nature. The present study was undertaken to characterize the presence of EGFR in rat hypothalamus and to determine if changes in EGFR gene expression and EGFR protein occur at the time of puberty. RNA blot hybridization demonstrated that the hypothalamus expresses all mRNA species known to encode EGFR. RNase protection assays revealed that alternative splicing of the EGFR primary mRNA transcript occurs in the hypothalamus and produces a predominant transcript encoding the full-length EGFR and a much less abundant, shorter mRNA encoding a truncated, and presumably secreted form of EGFR. EGFR-like immunoreactive material was found in several hypothalamic regions including the organum vasculosum of the lamina terminalis, supraoptic, suprachiasmatic, and paraventricular nuclei, ependymal cells lining the third ventricle, some astrocytes associated with blood vessels, astrocytes of the pial surface, and tanycytes and glial cells of the median eminence (ME). Low levels of EGFR mRNA were detected by hybridization histochemistry in cells of the same areas containing EGFR-like immunoreactivity. Double-immunohistochemistry revealed that even though LHRH neurons are in close proximity to EGFR-positive cells, they do not contain EGFR. In the ME, EGFR-immunonegative LHRH nerve terminals tightly coexist with EGFR-positive cells, presumably tanycytes and glial astrocytes. EGFR mRNA levels measured by quantitative reverse transcription-polymerase chain reaction assay (RT-PCR) in the ME-arcuate nucleus region at the time of puberty decreased in the morning of the first proestrus, i.e., preceding the first preovulatory surge of gonadotropins, and rebounded at the time of the surge. Functional EGFR protein levels, detected by the ability of the receptor to autophosphorylate in response to ligand or divalent antibody- induced activation, changed in a similar manner at the time of puberty. No such changes were observed in the cerebellum, a brain region irrelevant to neuroendocrine reproductive control. These results demonstrate the existence of EGF receptors in the prepubertal female rat hypothalamus and suggest that changes in EGFR gene expression and biologically active EGFR protein contributes to the neuroendocrine process underlying the first preovulatory surge of gonadotropins. The results also support the view that the stimulatory effect of TGFα/EGF on LHRH secretion is not exerted directly on LHRH neurons but rather through intermediate, EGFR-bearing cells.",
    author = "Ma, {Ying Jun} and Hill, {Diane F.} and Junier, {Marie Pierre} and Costa, {Maria E.} and Felder, {Stephen E.} and Sergio Ojeda",
    year = "1994",
    doi = "10.1006/mcne.1994.1029",
    language = "English (US)",
    volume = "5",
    pages = "246--262",
    journal = "Molecular and Cellular Neuroscience",
    issn = "1044-7431",
    publisher = "Academic Press Inc.",
    number = "3",

    }

    TY - JOUR

    T1 - Expression of epidermal growth factor receptor changes in the hypothalamus during the onset of female puberty

    AU - Ma, Ying Jun

    AU - Hill, Diane F.

    AU - Junier, Marie Pierre

    AU - Costa, Maria E.

    AU - Felder, Stephen E.

    AU - Ojeda, Sergio

    PY - 1994

    Y1 - 1994

    N2 - Recent findings have led to the concept that transforming growth factor alpha (TGFα) contributes to the neuroendocrine regulation of female puberty by stimulating the release of luteinizing hormone-releasing hormone (LHRH), the neurohormone controlling sexual development. It was postulated that this effect is mediated by epidermal growth factor receptors (EGFR) and that EGFR may not be located on LHRH neurons, so that TGFα-induced LHRH release would require an intermediate cell-to-cell interaction, presumably of glial- neuronal nature. The present study was undertaken to characterize the presence of EGFR in rat hypothalamus and to determine if changes in EGFR gene expression and EGFR protein occur at the time of puberty. RNA blot hybridization demonstrated that the hypothalamus expresses all mRNA species known to encode EGFR. RNase protection assays revealed that alternative splicing of the EGFR primary mRNA transcript occurs in the hypothalamus and produces a predominant transcript encoding the full-length EGFR and a much less abundant, shorter mRNA encoding a truncated, and presumably secreted form of EGFR. EGFR-like immunoreactive material was found in several hypothalamic regions including the organum vasculosum of the lamina terminalis, supraoptic, suprachiasmatic, and paraventricular nuclei, ependymal cells lining the third ventricle, some astrocytes associated with blood vessels, astrocytes of the pial surface, and tanycytes and glial cells of the median eminence (ME). Low levels of EGFR mRNA were detected by hybridization histochemistry in cells of the same areas containing EGFR-like immunoreactivity. Double-immunohistochemistry revealed that even though LHRH neurons are in close proximity to EGFR-positive cells, they do not contain EGFR. In the ME, EGFR-immunonegative LHRH nerve terminals tightly coexist with EGFR-positive cells, presumably tanycytes and glial astrocytes. EGFR mRNA levels measured by quantitative reverse transcription-polymerase chain reaction assay (RT-PCR) in the ME-arcuate nucleus region at the time of puberty decreased in the morning of the first proestrus, i.e., preceding the first preovulatory surge of gonadotropins, and rebounded at the time of the surge. Functional EGFR protein levels, detected by the ability of the receptor to autophosphorylate in response to ligand or divalent antibody- induced activation, changed in a similar manner at the time of puberty. No such changes were observed in the cerebellum, a brain region irrelevant to neuroendocrine reproductive control. These results demonstrate the existence of EGF receptors in the prepubertal female rat hypothalamus and suggest that changes in EGFR gene expression and biologically active EGFR protein contributes to the neuroendocrine process underlying the first preovulatory surge of gonadotropins. The results also support the view that the stimulatory effect of TGFα/EGF on LHRH secretion is not exerted directly on LHRH neurons but rather through intermediate, EGFR-bearing cells.

    AB - Recent findings have led to the concept that transforming growth factor alpha (TGFα) contributes to the neuroendocrine regulation of female puberty by stimulating the release of luteinizing hormone-releasing hormone (LHRH), the neurohormone controlling sexual development. It was postulated that this effect is mediated by epidermal growth factor receptors (EGFR) and that EGFR may not be located on LHRH neurons, so that TGFα-induced LHRH release would require an intermediate cell-to-cell interaction, presumably of glial- neuronal nature. The present study was undertaken to characterize the presence of EGFR in rat hypothalamus and to determine if changes in EGFR gene expression and EGFR protein occur at the time of puberty. RNA blot hybridization demonstrated that the hypothalamus expresses all mRNA species known to encode EGFR. RNase protection assays revealed that alternative splicing of the EGFR primary mRNA transcript occurs in the hypothalamus and produces a predominant transcript encoding the full-length EGFR and a much less abundant, shorter mRNA encoding a truncated, and presumably secreted form of EGFR. EGFR-like immunoreactive material was found in several hypothalamic regions including the organum vasculosum of the lamina terminalis, supraoptic, suprachiasmatic, and paraventricular nuclei, ependymal cells lining the third ventricle, some astrocytes associated with blood vessels, astrocytes of the pial surface, and tanycytes and glial cells of the median eminence (ME). Low levels of EGFR mRNA were detected by hybridization histochemistry in cells of the same areas containing EGFR-like immunoreactivity. Double-immunohistochemistry revealed that even though LHRH neurons are in close proximity to EGFR-positive cells, they do not contain EGFR. In the ME, EGFR-immunonegative LHRH nerve terminals tightly coexist with EGFR-positive cells, presumably tanycytes and glial astrocytes. EGFR mRNA levels measured by quantitative reverse transcription-polymerase chain reaction assay (RT-PCR) in the ME-arcuate nucleus region at the time of puberty decreased in the morning of the first proestrus, i.e., preceding the first preovulatory surge of gonadotropins, and rebounded at the time of the surge. Functional EGFR protein levels, detected by the ability of the receptor to autophosphorylate in response to ligand or divalent antibody- induced activation, changed in a similar manner at the time of puberty. No such changes were observed in the cerebellum, a brain region irrelevant to neuroendocrine reproductive control. These results demonstrate the existence of EGF receptors in the prepubertal female rat hypothalamus and suggest that changes in EGFR gene expression and biologically active EGFR protein contributes to the neuroendocrine process underlying the first preovulatory surge of gonadotropins. The results also support the view that the stimulatory effect of TGFα/EGF on LHRH secretion is not exerted directly on LHRH neurons but rather through intermediate, EGFR-bearing cells.

    UR - http://www.scopus.com/inward/record.url?scp=0028232262&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=0028232262&partnerID=8YFLogxK

    U2 - 10.1006/mcne.1994.1029

    DO - 10.1006/mcne.1994.1029

    M3 - Article

    VL - 5

    SP - 246

    EP - 262

    JO - Molecular and Cellular Neuroscience

    JF - Molecular and Cellular Neuroscience

    SN - 1044-7431

    IS - 3

    ER -