Examining mechanisms of brain control of bladder function with resting state functional connectivity MRI

Rahel Nardos, William Thomas Gregory, Christine Krisky, Amanda Newell, Binyam Nardos, Bradley Schlaggar, Damien A. Fair

Research output: Contribution to journalArticlepeer-review

31 Scopus citations

Abstract

Aims This aim of this study is to identify the brain mechanisms involved in bladder control. Methods We used fMRI to identify brain regions that are activated during bladder filling. We then used resting state connectivity fMRI (rs-fcMRI) to assess functional connectivity of regions identified by fMRI with the rest of the brain as the bladder is filled to capacity. Results Female participants (n = 20) were between ages 40 and 64 with no significant history of symptomatic urinary incontinence. Main effect of time (MET) fMRI analysis resulted in 20 regions of interest (ROIs) that have significant change in BOLD signal (z = 3.25, P <0.05) over the course of subtle bladder filling and emptying regardless of full versus empty bladder state. Bladder-state by time (BST) fMRI analysis resulted in three ROIs that have significant change in BOLD signal (z = 3.25, P <0.05) over the course of bladder runs comparing full versus empty bladder state. Rs-fcMRI fixed effects analysis identified significant changes in connectivity between full and empty bladder states in seven brain regions (z = 4.0) using the three BST ROIs and sixteen brain regions (z = 7) using the twenty MET ROIs. Regions identified include medial frontal gyrus, posterior cingulate (PCC), inferiolateral temporal and post-central gyrus, amygdale, the caudate, inferior parietal lobe as well as anterior and middle cingulate gyrus. Conclusions There is significant and vast changes in the brain's functional connectivity when bladder is filled suggesting that the central process responsible for the increased control during the full bladder state appears to largely rely on the how distributed brain systems are functionally integrated. Neurourol. Urodynam. 33:493-501, 2014.

Original languageEnglish (US)
Pages (from-to)493-501
Number of pages9
JournalNeurourology and Urodynamics
Volume33
Issue number5
DOIs
StatePublished - Jun 2014

Keywords

  • brain bladder control
  • brain imaging
  • functional MRI
  • overactive bladder
  • resting state connectivity MRI
  • urgency incontinence

ASJC Scopus subject areas

  • Clinical Neurology
  • Urology

Fingerprint

Dive into the research topics of 'Examining mechanisms of brain control of bladder function with resting state functional connectivity MRI'. Together they form a unique fingerprint.

Cite this