Evolution of insulin-like growth factor I(IGF-I): Structure and expression of an IGF-I precursor from xenopus laevis

Yoshitaka Kajimoto, Peter Rotwein

Research output: Contribution to journalArticle

57 Scopus citations

Abstract

By means of a cloning strategy employing the polymerase chain reaction, we have isolated and characterized cDNAs for Xenopus laevis insulin-like growth factor I (IGF-I). These cDNAs encode a primary IGF-I translation product of 153 residues that demonstrates considerable amino acid sequence similarity with IGF-IA peptides from other species. Fifty-seven of 70 residues of the mature protein are identical among human, rat, chicken, and Xenopus IGF-I, while less amino acid conservation is found at the COOH-terminus (25/35 identities) or at the NH2-ter-minus (24/48 identities) of the precursor protein. Despite the lower degree of structural similarity at the NH2-terminus, in vitro studies of IGF-I biosynthesis and proteolytic processing support a conserved function for the atypically long 48 residue NH2-terminal signal sequence in directing the nascent IGF-I peptide through the secretory pathway. The 5′-untranslated region of Xenopus IGF-I mRNA matches the human, rat, and chicken sequences in greater than 90% of 279 nucleotides. IGF-I mRNAs from all four species encode a conserved upstream open reading frame of 14 amino acids starting 240-250 nucleotides 5′ to the translation start site, suggesting a possible role for this region in modulating IGF-I gene expression. The X. laevis IGF-I gene is transcribed and processed into three mRNAs of 1.6, 2.1, and 3.0 kilobases in liver, and IGF-I mRNAs can be detected in liver, lung, heart, kidney, and peritoneal fat of adult animals. These studies demonstrate that both the IGF-I protein precursor and potential regulatory regions of IGF-I mRNA have been conserved during vertebrate evolution, and indicate that like several other polypeptide growth factors, IGF-I may be of fundamental importance in regulating specific aspects of growth and development in all vertebrates.

Original languageEnglish (US)
Pages (from-to)217-226
Number of pages10
JournalMolecular Endocrinology
Volume4
Issue number2
DOIs
StatePublished - Feb 1990

    Fingerprint

ASJC Scopus subject areas

  • Molecular Biology
  • Endocrinology

Cite this