Ethanolamine utilization in Salmonella typhimurium: Nucleotide sequence, protein expression, and mutational analysis of the cchA cchB eutE eutJ eutG eutH gene cluster

I. Stojiljkovic, A. J. Baumler, Fred Heffron

    Research output: Contribution to journalArticle

    233 Citations (Scopus)

    Abstract

    A fragment of the Salmonella typhimurium ethanolamine utilization operon was cloned and characterized. The 6.3-kb nucleotide sequence encoded six complete open reading frames, termed cchA, cchB, eutE, eutJ, eutG, and eutH. In addition, the nucleotide sequences of two incomplete open reading frames, termed eutX and eutI, were also determined. Comparison of the deduced amino acid sequences and entries in the GenBank database indicated that eutI encodes a phosphate acetyltransferase-like enzyme. The deduced amino acid sequences of the EutE and EutG proteins revealed a significant degree of homology with the Escherichia coil alcohol dehydrogenase AdhE sequence. Mutations in eutE or eutG completely abolished the ability of mutants to utilize ethanolamine as a carbon source and reduced the ability to utilize ethanolamine as a nitrogen source. The product of cute is must probably an acetaldehyde dehydrogenase catalyzing the conversion of acetaldehyde into acetyl coenzyme A. The product of the eutG gene, an uncommon iron-containing alcohol dehydrogenase, may protect the cell from unconverted acetaldehyde by converting it into an alcohol. The deduced amino acid sequence of cchA resembles that of carboxysome shell proteins from Thiobacillus neapolitanus and Synechococcus sp. as well as that of the PduA product from S. typhimurium. CchA and CchB proteins may be involved in the formation of an intracellular microcompartment responsible for the metabolism of ethanolamine. The hydrophobic protein encoded by the eutH gene possesses some characteristics of bacterial permeases and might therefore be involved in the transport of ethanolamine. Ethanolamine-utilization mutants were slightly attenuated in a mouse model of S. typhimurium infection, indicating that ethanolamine may be an important source of nitrogen and carbon for S. typhimurium in vivo.

    Original languageEnglish (US)
    Pages (from-to)1357-1366
    Number of pages10
    JournalJournal of Bacteriology
    Volume177
    Issue number5
    StatePublished - 1995

    Fingerprint

    Ethanolamine
    Salmonella typhimurium
    Multigene Family
    Proteins
    Amino Acid Sequence
    Acetaldehyde
    Alcohol Dehydrogenase
    Open Reading Frames
    Halothiobacillus
    Phosphate Acetyltransferase
    Nitrogen
    Carbon
    Synechococcus
    Escherichia
    Acetyl Coenzyme A
    Membrane Transport Proteins
    Salmonella Infections
    Nucleic Acid Databases
    Operon
    Genes

    ASJC Scopus subject areas

    • Applied Microbiology and Biotechnology
    • Immunology

    Cite this

    Ethanolamine utilization in Salmonella typhimurium : Nucleotide sequence, protein expression, and mutational analysis of the cchA cchB eutE eutJ eutG eutH gene cluster. / Stojiljkovic, I.; Baumler, A. J.; Heffron, Fred.

    In: Journal of Bacteriology, Vol. 177, No. 5, 1995, p. 1357-1366.

    Research output: Contribution to journalArticle

    @article{ca0dd82fe4d4423b8fb20c1bb88b72cf,
    title = "Ethanolamine utilization in Salmonella typhimurium: Nucleotide sequence, protein expression, and mutational analysis of the cchA cchB eutE eutJ eutG eutH gene cluster",
    abstract = "A fragment of the Salmonella typhimurium ethanolamine utilization operon was cloned and characterized. The 6.3-kb nucleotide sequence encoded six complete open reading frames, termed cchA, cchB, eutE, eutJ, eutG, and eutH. In addition, the nucleotide sequences of two incomplete open reading frames, termed eutX and eutI, were also determined. Comparison of the deduced amino acid sequences and entries in the GenBank database indicated that eutI encodes a phosphate acetyltransferase-like enzyme. The deduced amino acid sequences of the EutE and EutG proteins revealed a significant degree of homology with the Escherichia coil alcohol dehydrogenase AdhE sequence. Mutations in eutE or eutG completely abolished the ability of mutants to utilize ethanolamine as a carbon source and reduced the ability to utilize ethanolamine as a nitrogen source. The product of cute is must probably an acetaldehyde dehydrogenase catalyzing the conversion of acetaldehyde into acetyl coenzyme A. The product of the eutG gene, an uncommon iron-containing alcohol dehydrogenase, may protect the cell from unconverted acetaldehyde by converting it into an alcohol. The deduced amino acid sequence of cchA resembles that of carboxysome shell proteins from Thiobacillus neapolitanus and Synechococcus sp. as well as that of the PduA product from S. typhimurium. CchA and CchB proteins may be involved in the formation of an intracellular microcompartment responsible for the metabolism of ethanolamine. The hydrophobic protein encoded by the eutH gene possesses some characteristics of bacterial permeases and might therefore be involved in the transport of ethanolamine. Ethanolamine-utilization mutants were slightly attenuated in a mouse model of S. typhimurium infection, indicating that ethanolamine may be an important source of nitrogen and carbon for S. typhimurium in vivo.",
    author = "I. Stojiljkovic and Baumler, {A. J.} and Fred Heffron",
    year = "1995",
    language = "English (US)",
    volume = "177",
    pages = "1357--1366",
    journal = "Journal of Bacteriology",
    issn = "0021-9193",
    publisher = "American Society for Microbiology",
    number = "5",

    }

    TY - JOUR

    T1 - Ethanolamine utilization in Salmonella typhimurium

    T2 - Nucleotide sequence, protein expression, and mutational analysis of the cchA cchB eutE eutJ eutG eutH gene cluster

    AU - Stojiljkovic, I.

    AU - Baumler, A. J.

    AU - Heffron, Fred

    PY - 1995

    Y1 - 1995

    N2 - A fragment of the Salmonella typhimurium ethanolamine utilization operon was cloned and characterized. The 6.3-kb nucleotide sequence encoded six complete open reading frames, termed cchA, cchB, eutE, eutJ, eutG, and eutH. In addition, the nucleotide sequences of two incomplete open reading frames, termed eutX and eutI, were also determined. Comparison of the deduced amino acid sequences and entries in the GenBank database indicated that eutI encodes a phosphate acetyltransferase-like enzyme. The deduced amino acid sequences of the EutE and EutG proteins revealed a significant degree of homology with the Escherichia coil alcohol dehydrogenase AdhE sequence. Mutations in eutE or eutG completely abolished the ability of mutants to utilize ethanolamine as a carbon source and reduced the ability to utilize ethanolamine as a nitrogen source. The product of cute is must probably an acetaldehyde dehydrogenase catalyzing the conversion of acetaldehyde into acetyl coenzyme A. The product of the eutG gene, an uncommon iron-containing alcohol dehydrogenase, may protect the cell from unconverted acetaldehyde by converting it into an alcohol. The deduced amino acid sequence of cchA resembles that of carboxysome shell proteins from Thiobacillus neapolitanus and Synechococcus sp. as well as that of the PduA product from S. typhimurium. CchA and CchB proteins may be involved in the formation of an intracellular microcompartment responsible for the metabolism of ethanolamine. The hydrophobic protein encoded by the eutH gene possesses some characteristics of bacterial permeases and might therefore be involved in the transport of ethanolamine. Ethanolamine-utilization mutants were slightly attenuated in a mouse model of S. typhimurium infection, indicating that ethanolamine may be an important source of nitrogen and carbon for S. typhimurium in vivo.

    AB - A fragment of the Salmonella typhimurium ethanolamine utilization operon was cloned and characterized. The 6.3-kb nucleotide sequence encoded six complete open reading frames, termed cchA, cchB, eutE, eutJ, eutG, and eutH. In addition, the nucleotide sequences of two incomplete open reading frames, termed eutX and eutI, were also determined. Comparison of the deduced amino acid sequences and entries in the GenBank database indicated that eutI encodes a phosphate acetyltransferase-like enzyme. The deduced amino acid sequences of the EutE and EutG proteins revealed a significant degree of homology with the Escherichia coil alcohol dehydrogenase AdhE sequence. Mutations in eutE or eutG completely abolished the ability of mutants to utilize ethanolamine as a carbon source and reduced the ability to utilize ethanolamine as a nitrogen source. The product of cute is must probably an acetaldehyde dehydrogenase catalyzing the conversion of acetaldehyde into acetyl coenzyme A. The product of the eutG gene, an uncommon iron-containing alcohol dehydrogenase, may protect the cell from unconverted acetaldehyde by converting it into an alcohol. The deduced amino acid sequence of cchA resembles that of carboxysome shell proteins from Thiobacillus neapolitanus and Synechococcus sp. as well as that of the PduA product from S. typhimurium. CchA and CchB proteins may be involved in the formation of an intracellular microcompartment responsible for the metabolism of ethanolamine. The hydrophobic protein encoded by the eutH gene possesses some characteristics of bacterial permeases and might therefore be involved in the transport of ethanolamine. Ethanolamine-utilization mutants were slightly attenuated in a mouse model of S. typhimurium infection, indicating that ethanolamine may be an important source of nitrogen and carbon for S. typhimurium in vivo.

    UR - http://www.scopus.com/inward/record.url?scp=0028944586&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=0028944586&partnerID=8YFLogxK

    M3 - Article

    C2 - 7868611

    AN - SCOPUS:0028944586

    VL - 177

    SP - 1357

    EP - 1366

    JO - Journal of Bacteriology

    JF - Journal of Bacteriology

    SN - 0021-9193

    IS - 5

    ER -