Estradiol Rapidly Attenuates ORL-1 Receptor-Mediated Inhibition of Proopiomelanocortin Neurons via Gq-Coupled, Membrane-Initiated Signaling

Kristie Conde, Cecilia Meza, Martin Kelly, Kevin Sinchak, Edward J. Wagner

Research output: Contribution to journalArticle

12 Scopus citations


Estradiol rapidly regulates the activity of arcuate nucleus (ARH) proopiomelanocortin (POMC) neurons that project to the medial preoptic nucleus (MPN) to regulate lordosis. Orphanin FQ/nociceptin (OFQ/N) acts via opioid receptor-like (ORL)-1 receptors to inhibit these POMC neurons. Therefore, we tested the hypothesis that estradiol excites POMC neurons by rapidly attenuating inhibitory ORL-1 signaling in these cells. Hypothalamic slices through the ARH were prepared from ovariectomized rats injected with Fluorogold into the MPN. Electrophysiologic recordings were generated in ARH neurons held at or near -60 mV and neuronal phenotype was determined posthoc by immunohistofluorescence. OFQ/N application induced robust outward currents and hyperpolarizations via GIRK channels that were attenuated by pretreatment with either 17-β estradiol (E2) or E2 conjugated to bovine serum albumin. This was blocked by the estrogen receptor (ER) antagonist ICI 182,780, and mimicked by the Gq-coupled, membrane ER (Gq-mER) ligand STX and the ERα agonist PPT. Inhibiting phosphatidylinositol-3-kinase (PI3K) blocked the estrogenic attenuation of ORL-1/GIRK currents. Antagonizing either phospholipase C (PLC), protein kinase C (PKC), protein kinase A (PKA) or neuronal nitric oxide synthase (nNOS) also abrogated E2 inhibition of ORL-1/GIRK currents, whereas activation of PKC, PKA and nNOS substrate L-arginine all attenuated the OFQ/N response. This was observed in 87 MPN-projecting, POMC-positive ARH neurons. Thus, ORL-1 receptor-mediated inhibition of POMC neurons is rapidly and negatively modulated by E2, an effect which is stereoselective and membrane initiated via Gq-coupled mER and ERα activation that signals through PLC, PKC, PKA and nNOS.

Original languageEnglish (US)
StateAccepted/In press - Jan 16 2016


ASJC Scopus subject areas

  • Endocrinology
  • Endocrinology, Diabetes and Metabolism
  • Endocrine and Autonomic Systems
  • Cellular and Molecular Neuroscience

Cite this