Equilibrium transcytolemmal water-exchange kinetics in skeletal muscle in vivo

Charles S. Landis, Xin Li, Frank W. Telang, Patricia E. Molina, Ildiko Palyka, Gabor Vetek, Charles S. Springer

Research output: Contribution to journalArticlepeer-review

179 Scopus citations

Abstract

It is commonly assumed that equilibrium transcytolemmal water exchange in tissue is sufficiently frequent as to be fast on any NMR time scale achievable with an extracellular contrast agent (CR) in vivo. A survey of literature values for cell membrane diffusional permeability coefficients (P) and cell sizes suggests that this should not really be so. To evaluate this issue experimentally, we used a programmed intravenous CR infusion protocol for the rat with several rate plateaus, each of which achieved an increased steady-state concentration of GdDTPA2- in the blood plasma. Interleaved rigorous measurements of 1H2O inversion recoveries were made from arterial blood and from a region of homogeneous thigh muscle tissue throughout the CR infusion. We made careful relaxographic analyses for the blood and muscle 1H2O longitudinal relaxation times. The combined data from several animals were evaluated with a two-site model for equilibrium transcytolemmal water exchange. An excellent fitting was achieved, with parameters that agreed very well with the relevant physiological properties available in the literature. The fraction of water in the extracellular space, 0.11, is quite consistent with published values, as well as with reported tissue CR concentrations when one accounts for the restriction of CR to this space. The derived average lifetime for a water molecule in the thigh muscle sarcoplasm, 1.1 ± 0.4 sec, implies a sarcolemmal P of 13 x 10-4 cm/sec, which is well within the range of literature values determined in vitro. Moreover, we find that because of the exchange, the 1H2O longitudinal relaxation rate constant exhibits a decided nonlinear dependence on the tissue or thermodynamic (extracellular) concentration of GdDTPA2-. The muscle system departs the fast-exchange limit at a [CR] value of <100 μmol/L. This has significant implications for the quantitative use of CRs as MRI tracers.

Original languageEnglish (US)
Pages (from-to)467-478
Number of pages12
JournalMagnetic Resonance in Medicine
Volume42
Issue number3
DOIs
StatePublished - 1999
Externally publishedYes

Keywords

  • CR
  • Concentration
  • Exchange
  • Transcytolemmal
  • Water

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Equilibrium transcytolemmal water-exchange kinetics in skeletal muscle in vivo'. Together they form a unique fingerprint.

Cite this