Environmental variables differentially affect ethanol-stimulated activity in selectively bred mouse lines

John Jr Crabbe, Catherine M. Deutsch, Brenda R. Tam, Emmett R. Young

Research output: Contribution to journalArticle

22 Citations (Scopus)

Abstract

Low doses of ethanol (EtOH) stimulate activity in an open field in many strains of laboratory mice. We are selectively breeding two lines of mice to exhibit a large (FAST) response on this test, and two other lines to exhibit a small (SLOW) response (Crabbe et al. 1987). The lines initially diverged in response to EtOH, but despite continued selection pressure, the difference between each pair of FAST and SLOW lines has not increased over generations as much as expected. Our practice has been to test animals on the 1st day after saline injection, and repeat the test after EtOH injection 24 h later. Lister (1987) recently demonstrated that the order in which an animal was exposed to EtOH and saline influenced the magnitude of the response to EtOH, with animals tested initially after EtOH having greater stimulation. Middaugh et al. (1987) recently demonstrated that the magnitude of EtOH stimulation was greater under conditions of relatively bright light than under dim light. Using non-selected Swiss mice, the current experiments essentially confirmed Lister's findings. Using FAST and SLOW mice, the predictions of both groups were tested. Both hypotheses were confirmed. Additionally, these experiments demonstrated that the magnitude of the difference between FAST and SLOW mice was greater under bright light than under dim light. The line difference was also greater when tested in the EtOH-Saline order. In experiments with Swiss mice, the possible role of peritoneal irritation in the EtOH effect was eliminated, and the optimal dose and time for demonstrating the effect was determined. These experiments confirm the importance of lighting condition, order of testing, dose, and route of administration in eliciting EtOH-stimulated open field activity in mice. They demonstrate a genotype-environment interaction, since the magnitude of difference between genetically selected lines varied as a function of the testing parameters chosen. Finally, they indicate that the differences between FAST and SLOW lines in sensitivity to EtOH generalizes to several environmental conditions. We interpret this to mean that the various EtOH-induced activation traits represented by these different environmental and testing conditions are genetically correlated.

Original languageEnglish (US)
Pages (from-to)103-108
Number of pages6
JournalPsychopharmacology
Volume95
Issue number1
DOIs
StatePublished - May 1988

Fingerprint

Ethanol
Light
Injections
Lighting
Breeding
Genotype
Pressure

Keywords

  • Ethanol-stimulated activity
  • Genetics
  • Mouse
  • Selective breeding

ASJC Scopus subject areas

  • Pharmacology

Cite this

Environmental variables differentially affect ethanol-stimulated activity in selectively bred mouse lines. / Crabbe, John Jr; Deutsch, Catherine M.; Tam, Brenda R.; Young, Emmett R.

In: Psychopharmacology, Vol. 95, No. 1, 05.1988, p. 103-108.

Research output: Contribution to journalArticle

Crabbe, John Jr ; Deutsch, Catherine M. ; Tam, Brenda R. ; Young, Emmett R. / Environmental variables differentially affect ethanol-stimulated activity in selectively bred mouse lines. In: Psychopharmacology. 1988 ; Vol. 95, No. 1. pp. 103-108.
@article{17590f374c474ccbbecb27e11fad0e6e,
title = "Environmental variables differentially affect ethanol-stimulated activity in selectively bred mouse lines",
abstract = "Low doses of ethanol (EtOH) stimulate activity in an open field in many strains of laboratory mice. We are selectively breeding two lines of mice to exhibit a large (FAST) response on this test, and two other lines to exhibit a small (SLOW) response (Crabbe et al. 1987). The lines initially diverged in response to EtOH, but despite continued selection pressure, the difference between each pair of FAST and SLOW lines has not increased over generations as much as expected. Our practice has been to test animals on the 1st day after saline injection, and repeat the test after EtOH injection 24 h later. Lister (1987) recently demonstrated that the order in which an animal was exposed to EtOH and saline influenced the magnitude of the response to EtOH, with animals tested initially after EtOH having greater stimulation. Middaugh et al. (1987) recently demonstrated that the magnitude of EtOH stimulation was greater under conditions of relatively bright light than under dim light. Using non-selected Swiss mice, the current experiments essentially confirmed Lister's findings. Using FAST and SLOW mice, the predictions of both groups were tested. Both hypotheses were confirmed. Additionally, these experiments demonstrated that the magnitude of the difference between FAST and SLOW mice was greater under bright light than under dim light. The line difference was also greater when tested in the EtOH-Saline order. In experiments with Swiss mice, the possible role of peritoneal irritation in the EtOH effect was eliminated, and the optimal dose and time for demonstrating the effect was determined. These experiments confirm the importance of lighting condition, order of testing, dose, and route of administration in eliciting EtOH-stimulated open field activity in mice. They demonstrate a genotype-environment interaction, since the magnitude of difference between genetically selected lines varied as a function of the testing parameters chosen. Finally, they indicate that the differences between FAST and SLOW lines in sensitivity to EtOH generalizes to several environmental conditions. We interpret this to mean that the various EtOH-induced activation traits represented by these different environmental and testing conditions are genetically correlated.",
keywords = "Ethanol-stimulated activity, Genetics, Mouse, Selective breeding",
author = "Crabbe, {John Jr} and Deutsch, {Catherine M.} and Tam, {Brenda R.} and Young, {Emmett R.}",
year = "1988",
month = "5",
doi = "10.1007/BF00212776",
language = "English (US)",
volume = "95",
pages = "103--108",
journal = "Psychopharmacology",
issn = "0033-3158",
publisher = "Springer Verlag",
number = "1",

}

TY - JOUR

T1 - Environmental variables differentially affect ethanol-stimulated activity in selectively bred mouse lines

AU - Crabbe, John Jr

AU - Deutsch, Catherine M.

AU - Tam, Brenda R.

AU - Young, Emmett R.

PY - 1988/5

Y1 - 1988/5

N2 - Low doses of ethanol (EtOH) stimulate activity in an open field in many strains of laboratory mice. We are selectively breeding two lines of mice to exhibit a large (FAST) response on this test, and two other lines to exhibit a small (SLOW) response (Crabbe et al. 1987). The lines initially diverged in response to EtOH, but despite continued selection pressure, the difference between each pair of FAST and SLOW lines has not increased over generations as much as expected. Our practice has been to test animals on the 1st day after saline injection, and repeat the test after EtOH injection 24 h later. Lister (1987) recently demonstrated that the order in which an animal was exposed to EtOH and saline influenced the magnitude of the response to EtOH, with animals tested initially after EtOH having greater stimulation. Middaugh et al. (1987) recently demonstrated that the magnitude of EtOH stimulation was greater under conditions of relatively bright light than under dim light. Using non-selected Swiss mice, the current experiments essentially confirmed Lister's findings. Using FAST and SLOW mice, the predictions of both groups were tested. Both hypotheses were confirmed. Additionally, these experiments demonstrated that the magnitude of the difference between FAST and SLOW mice was greater under bright light than under dim light. The line difference was also greater when tested in the EtOH-Saline order. In experiments with Swiss mice, the possible role of peritoneal irritation in the EtOH effect was eliminated, and the optimal dose and time for demonstrating the effect was determined. These experiments confirm the importance of lighting condition, order of testing, dose, and route of administration in eliciting EtOH-stimulated open field activity in mice. They demonstrate a genotype-environment interaction, since the magnitude of difference between genetically selected lines varied as a function of the testing parameters chosen. Finally, they indicate that the differences between FAST and SLOW lines in sensitivity to EtOH generalizes to several environmental conditions. We interpret this to mean that the various EtOH-induced activation traits represented by these different environmental and testing conditions are genetically correlated.

AB - Low doses of ethanol (EtOH) stimulate activity in an open field in many strains of laboratory mice. We are selectively breeding two lines of mice to exhibit a large (FAST) response on this test, and two other lines to exhibit a small (SLOW) response (Crabbe et al. 1987). The lines initially diverged in response to EtOH, but despite continued selection pressure, the difference between each pair of FAST and SLOW lines has not increased over generations as much as expected. Our practice has been to test animals on the 1st day after saline injection, and repeat the test after EtOH injection 24 h later. Lister (1987) recently demonstrated that the order in which an animal was exposed to EtOH and saline influenced the magnitude of the response to EtOH, with animals tested initially after EtOH having greater stimulation. Middaugh et al. (1987) recently demonstrated that the magnitude of EtOH stimulation was greater under conditions of relatively bright light than under dim light. Using non-selected Swiss mice, the current experiments essentially confirmed Lister's findings. Using FAST and SLOW mice, the predictions of both groups were tested. Both hypotheses were confirmed. Additionally, these experiments demonstrated that the magnitude of the difference between FAST and SLOW mice was greater under bright light than under dim light. The line difference was also greater when tested in the EtOH-Saline order. In experiments with Swiss mice, the possible role of peritoneal irritation in the EtOH effect was eliminated, and the optimal dose and time for demonstrating the effect was determined. These experiments confirm the importance of lighting condition, order of testing, dose, and route of administration in eliciting EtOH-stimulated open field activity in mice. They demonstrate a genotype-environment interaction, since the magnitude of difference between genetically selected lines varied as a function of the testing parameters chosen. Finally, they indicate that the differences between FAST and SLOW lines in sensitivity to EtOH generalizes to several environmental conditions. We interpret this to mean that the various EtOH-induced activation traits represented by these different environmental and testing conditions are genetically correlated.

KW - Ethanol-stimulated activity

KW - Genetics

KW - Mouse

KW - Selective breeding

UR - http://www.scopus.com/inward/record.url?scp=0023928109&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0023928109&partnerID=8YFLogxK

U2 - 10.1007/BF00212776

DO - 10.1007/BF00212776

M3 - Article

C2 - 3133687

AN - SCOPUS:0023928109

VL - 95

SP - 103

EP - 108

JO - Psychopharmacology

JF - Psychopharmacology

SN - 0033-3158

IS - 1

ER -