Enhanced activation of a "nutrient-sensing" pathway with age contributes to insulin resistance

Francine H. Einstein, Sigal Fishman, Jeffery Bauman, Reid F. Thompson, Derek M. Huffman, Gil Atzmon, Nir Barzilai, Radhika H. Muzumdar

Research output: Contribution to journalArticle

33 Scopus citations

Abstract

Calorie restriction improves life span whereas nutrient excess leads to obesity and unfavorable metabolic consequences, supporting the role for a cellular "nutrient sensor" in aging. Hexosamine biosynthetic pathway (HBP) is a candidate nutrient-sensing pathway. We hypothesized that altered nutrient sensing (by HBP) with age may provide a link among aging, nutrient flux, and insulin resistance. Using a hyperinsulinemic clamp in young rats, we show that experimental activation of HBP, through the systemic infusion of glucosamine, induced severe insulin resistance (36% decline in peripheral insulin action; P<0.05), increased adipose tissue gene expression of fat-derived peptides (PAI-1 by 4-fold, angiotensinogen 3-fold, leptin 2-fold, resistin 4-fold, and adiponectin 4-fold; P<0.01 compared with young saline-infused), and enhanced glycosylation of transcription factors, thus mimicking a physiological and biological phenotype of aging. We further demonstrate a greater activation of nutrient-sensing HBP with age in both old ad libitum-fed and calorie-restricted rats. Interestingly, old calorie-restricted animals rapidly develop insulin resistance when exposed to glucosamine, despite their "young" phenotype. These results suggest that altered nutrient sensing by HBP with age may be the link among nutrients, insulin resistance, and age-related diabetes.

Original languageEnglish (US)
Pages (from-to)3450-3457
Number of pages8
JournalFASEB Journal
Volume22
Issue number10
DOIs
StatePublished - Oct 2008

ASJC Scopus subject areas

  • Biotechnology
  • Biochemistry
  • Molecular Biology
  • Genetics

Fingerprint Dive into the research topics of 'Enhanced activation of a "nutrient-sensing" pathway with age contributes to insulin resistance'. Together they form a unique fingerprint.

  • Cite this

    Einstein, F. H., Fishman, S., Bauman, J., Thompson, R. F., Huffman, D. M., Atzmon, G., Barzilai, N., & Muzumdar, R. H. (2008). Enhanced activation of a "nutrient-sensing" pathway with age contributes to insulin resistance. FASEB Journal, 22(10), 3450-3457. https://doi.org/10.1096/fj.08-109041