Endocytic trafficking of Wingless and its receptors, Arrow and DFrizzled-2, in the Drosophila wing

Anna F. Rives, Kate M. Rochlin, Marcel Wehrli, Stephanie L. Schwartz, Stephen DiNardo

Research output: Contribution to journalArticlepeer-review

63 Scopus citations

Abstract

During animal development, Wnt/Wingless (Wg) signaling is required for the patterning of multiple tissues. While insufficient signal transduction is detrimental to normal development, ectopic activation of the pathway can be just as devastating. Thus, numerous controls exist to precisely regulate Wg signaling levels. Endocytic trafficking of pathway components has recently been proposed as one such control mechanism. Here, we characterize the vesicular trafficking of Wg and its receptors, Arrow and DFrizzled-2 (DFz2), and investigate whether trafficking is important to regulate Wg signaling during dorsoventral patterning of the larval wing. We demonstrate a role for Arrow and DFz2 in Wg internalization. Subsequently, Wg, Arrow and DFz2 are trafficked through the endocytic pathway to the lysosome, where they are degraded in a hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs)-dependent manner. Surprisingly, we find that Wg signaling is not attenuated by lysosomal targeting in the wing disc. Rather, we suggest that signaling is dampened intracellularly at an earlier trafficking step. This is in contrast to patterning of the embryonic epidermis, where lysosomal targeting is required to restrict the range of Wg signaling. Thus, signal modulation by endocytic routing will depend on the tissue to be patterned and the goals during that patterning event.

Original languageEnglish (US)
Pages (from-to)268-283
Number of pages16
JournalDevelopmental Biology
Volume293
Issue number1
DOIs
StatePublished - May 1 2006

Keywords

  • Arrow
  • Endocytic trafficking
  • Frizzled-2
  • Wingless

ASJC Scopus subject areas

  • Molecular Biology
  • Developmental Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Endocytic trafficking of Wingless and its receptors, Arrow and DFrizzled-2, in the Drosophila wing'. Together they form a unique fingerprint.

Cite this