Electric field process for the fabrication of higher order structures form biomolecule derivatized nanoparticles (#1030)

M. J. Heller, D. Dehlinger, B. Sullivan, S. Esener

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

An electronic microarray has been used to carry out directed self-assembly of higher order 3D structures from Biotin/Streptavidin and DNA derivatized nanoparticles. Structures with up to fifty layers of alternating biotin and streptavidin and DNA nanoparticles were fabricated using a 400 site CMOS microarray system. In this process, reconfigurable electric fields produced by the microarray device were used to rapidly transport, concentrate and accelerate the binding of 40 nanometer biotin, streptavidin and DNA derivatized nanoparticles to selected sites on the microarray. The nanoparticle layering process takes less than one minute per layer (10-20 seconds for addressing and binding nanoparticles, 40 seconds for washing). The nanoparticle addressing/binding process was monitored by changes in fluorescence intensity as each nanoparticle layer was deposited. The final multilayered 3-D structures are about two microns in thickness and 50 microns in diameter. Active structures with chemical to luminescent to fluorescent properties are now being fabricated. The use of a microelectronic array device for assisted self-assembly represents a unique example of combining "top-down" and "bottom-up" technologies into a unique nanofabrication process. Such a process will be useful for the hierarchal assembly of 3D nano, micro, and macrostructures for a variety of electronic/photonic, nanomaterials, energy and biosensor applications.

Original languageEnglish (US)
Title of host publication2007 NSTI Nanotechnology Conference and Trade Show - NSTI Nanotech 2007, Technical Proceedings
Pages269-270
Number of pages2
StatePublished - 2007
Externally publishedYes
Event2007 NSTI Nanotechnology Conference and Trade Show - NSTI Nanotech 2007 - Santa Clara, CA, United States
Duration: May 20 2007May 24 2007

Publication series

Name2007 NSTI Nanotechnology Conference and Trade Show - NSTI Nanotech 2007, Technical Proceedings
Volume1

Other

Other2007 NSTI Nanotechnology Conference and Trade Show - NSTI Nanotech 2007
Country/TerritoryUnited States
CitySanta Clara, CA
Period5/20/075/24/07

Keywords

  • Electric field
  • Higher order structures
  • Nanofabrication
  • Nanoparticles
  • Self-assembly

ASJC Scopus subject areas

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Electric field process for the fabrication of higher order structures form biomolecule derivatized nanoparticles (#1030)'. Together they form a unique fingerprint.

Cite this