Efficient postacquisition synchronization of 4-D nongated cardiac images obtained from optical coherence tomography: Application to 4-D reconstruction of the chick embryonic heart

Aiping Liu, Ruikang Wang, Kent L. Thornburg, Sandra Rugonyi

Research output: Contribution to journalArticlepeer-review

60 Scopus citations

Abstract

Four-dimensional (4-D) imaging of the embryonic heart allows study of cardiac morphology and function in vivo during development. However, 4-D imaging of the embryonic heart using current techniques, including optical coherence tomography (OCT), is limited by the rate of image acquisition. Here, we present a nongated 4-D imaging strategy combined with an efficient postacquisition synchronization procedure that circumvents limitations on acquisition rate. The 4-D imaging strategy acquires a time series of images in B mode at several different locations along the heart, rendering out-of-phase image sequences. Then, our synchronization procedure uses similarity of local structures to find the phase shift between neighboring image sequences, employing M-mode images (extracted from the acquired B-mode images) to achieve computational efficiency. Furthermore, our procedure corrects the phase shifts by considering the phase lags introduced by peristaltic-like contractions of the embryonic heart wall. We applied the 4-D imaging strategy and synchronization procedure to reconstruct the cardiac outflow tract (OFT) of a chick embryo, imaged with OCT at early stages of development (Hamburger-Hamilton stage 18). We showed that the proposed synchronization procedure achieves efficiency without sacrificing accuracy and that the reconstructed 4-D images properly captured the dynamics of the OFT wall motion.

Original languageEnglish (US)
Article number044020
JournalJournal of biomedical optics
Volume14
Issue number4
DOIs
StatePublished - 2009

Keywords

  • M-mode image
  • cardiac development
  • cardiac imaging
  • cardiac reconstruction
  • chick embryonic heart
  • outflow tract
  • phase lag
  • postacquisition synchronization

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Atomic and Molecular Physics, and Optics
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Efficient postacquisition synchronization of 4-D nongated cardiac images obtained from optical coherence tomography: Application to 4-D reconstruction of the chick embryonic heart'. Together they form a unique fingerprint.

Cite this