Efficient dynamic importance sampling of rare events in one dimension

Daniel M. Zuckerman, Thomas B. Woolf

Research output: Contribution to journalArticle

55 Scopus citations

Abstract

Exploiting stochastic path-integral theory, we obtain by simulation substantial gains in efficiency for the computation of reaction rates in one-dimensional, bistable, overdamped stochastic systems. Using a well-defined measure of efficiency, we compare implementations of “dynamic importance sampling” (DIMS) methods to unbiased simulation. The best DIMS algorithms are shown to increase efficiency by factors of approximately 20 for a (Formula presented) barrier height and 300 for (Formula presented) compared to unbiased simulation. The gains result from close emulation of natural (unbiased), instantonlike crossing events with artificially decreased waiting times between events that are corrected for in rate calculations. The artificial crossing events are generated using the closed-form solution to the most probable crossing event described by the Onsager-Machlup action. While the best biasing methods require the second derivative of the potential (resulting from the “Jacobian” term in the action, which is discussed at length), algorithms employing solely the first derivative do nearly as well. We discuss the importance of one-dimensional models to larger systems, and suggest extensions to higher-dimensional systems.

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Efficient dynamic importance sampling of rare events in one dimension'. Together they form a unique fingerprint.

  • Cite this