Efficacy and kinetics of opioid action on acutely dissociated neurons

Susan Ingram, Tim J. Wilding, Ed W. Mccleskey, John Williams

Research output: Contribution to journalArticle

32 Citations (Scopus)

Abstract

Opioids have been shown to cause a potent inhibition of neurons in the locus ceruleus (LC) in vivo in brain slices and isolated neurons; however, the kinetics of opioid action have not been described. In this study, we used acutely isolated LC neurons to examine opioid and α2-adrenoceptor action on potassium and calcium currents. [Met]Enkephalin (ME), [D-Ser2,Leu5,Thr6]- enkephalin, etorphine, and [D-Ala2,N-Me-Phe4,Gly-ol5]enkephalin increased potassium conductance, whereas morphine and naloxone were antagonists. The time constant of potassium channel activation was ~0.7 sec and was the same for each agonist. The amplitude of the current and the time constant of decay were dependent on the agonist, suggesting that agonist efficacy and affinity, respectively, determined these parameters. The amplitude of potassium current induced by the α2-adrenoceptor agonist UK14304 was not significantly different from that induced by ME, but the time constant of current activation was half that of ME, and the decline was more rapid. When potassium conductances were blocked with the combination of internal cesium and external barium, opioid and α2 agonists had no effect at potentials more negative than -50 mV and decreased barium currents at potentials between -40 and +20 mV. Both morphine and clonidine caused a small inhibition of barium current. In dorsal root ganglion cells, morphine alone had small and inconsistent effects on the calcium current, but it always competitively antagonized the inhibition caused by [D-Ala2,N-Me-Phe4,Gly-ol5]enkephalin. The results in isolated LC neurons suggest 1) the amplitude and time course of the opioid-induced potassium current depend on agonist efficacy and affinity and 2) the coupling of both μ-opioid and α2-adrenoceptors to calcium channels seems to be more efficient than that to potassium channels.

Original languageEnglish (US)
Pages (from-to)136-143
Number of pages8
JournalMolecular Pharmacology
Volume52
Issue number1
StatePublished - Jul 1997

Fingerprint

Opioid Analgesics
Potassium
Neurons
Methionine Enkephalin
Locus Coeruleus
Barium
Adrenergic Receptors
Morphine
Enkephalins
Potassium Channels
Etorphine
Calcium
Cesium
Clonidine
Spinal Ganglia
Calcium Channels
Naloxone
Brain

ASJC Scopus subject areas

  • Pharmacology

Cite this

Efficacy and kinetics of opioid action on acutely dissociated neurons. / Ingram, Susan; Wilding, Tim J.; Mccleskey, Ed W.; Williams, John.

In: Molecular Pharmacology, Vol. 52, No. 1, 07.1997, p. 136-143.

Research output: Contribution to journalArticle

Ingram, Susan ; Wilding, Tim J. ; Mccleskey, Ed W. ; Williams, John. / Efficacy and kinetics of opioid action on acutely dissociated neurons. In: Molecular Pharmacology. 1997 ; Vol. 52, No. 1. pp. 136-143.
@article{a28105b558464211951cc6a1b3c04c0e,
title = "Efficacy and kinetics of opioid action on acutely dissociated neurons",
abstract = "Opioids have been shown to cause a potent inhibition of neurons in the locus ceruleus (LC) in vivo in brain slices and isolated neurons; however, the kinetics of opioid action have not been described. In this study, we used acutely isolated LC neurons to examine opioid and α2-adrenoceptor action on potassium and calcium currents. [Met]Enkephalin (ME), [D-Ser2,Leu5,Thr6]- enkephalin, etorphine, and [D-Ala2,N-Me-Phe4,Gly-ol5]enkephalin increased potassium conductance, whereas morphine and naloxone were antagonists. The time constant of potassium channel activation was ~0.7 sec and was the same for each agonist. The amplitude of the current and the time constant of decay were dependent on the agonist, suggesting that agonist efficacy and affinity, respectively, determined these parameters. The amplitude of potassium current induced by the α2-adrenoceptor agonist UK14304 was not significantly different from that induced by ME, but the time constant of current activation was half that of ME, and the decline was more rapid. When potassium conductances were blocked with the combination of internal cesium and external barium, opioid and α2 agonists had no effect at potentials more negative than -50 mV and decreased barium currents at potentials between -40 and +20 mV. Both morphine and clonidine caused a small inhibition of barium current. In dorsal root ganglion cells, morphine alone had small and inconsistent effects on the calcium current, but it always competitively antagonized the inhibition caused by [D-Ala2,N-Me-Phe4,Gly-ol5]enkephalin. The results in isolated LC neurons suggest 1) the amplitude and time course of the opioid-induced potassium current depend on agonist efficacy and affinity and 2) the coupling of both μ-opioid and α2-adrenoceptors to calcium channels seems to be more efficient than that to potassium channels.",
author = "Susan Ingram and Wilding, {Tim J.} and Mccleskey, {Ed W.} and John Williams",
year = "1997",
month = "7",
language = "English (US)",
volume = "52",
pages = "136--143",
journal = "Molecular Pharmacology",
issn = "0026-895X",
publisher = "American Society for Pharmacology and Experimental Therapeutics",
number = "1",

}

TY - JOUR

T1 - Efficacy and kinetics of opioid action on acutely dissociated neurons

AU - Ingram, Susan

AU - Wilding, Tim J.

AU - Mccleskey, Ed W.

AU - Williams, John

PY - 1997/7

Y1 - 1997/7

N2 - Opioids have been shown to cause a potent inhibition of neurons in the locus ceruleus (LC) in vivo in brain slices and isolated neurons; however, the kinetics of opioid action have not been described. In this study, we used acutely isolated LC neurons to examine opioid and α2-adrenoceptor action on potassium and calcium currents. [Met]Enkephalin (ME), [D-Ser2,Leu5,Thr6]- enkephalin, etorphine, and [D-Ala2,N-Me-Phe4,Gly-ol5]enkephalin increased potassium conductance, whereas morphine and naloxone were antagonists. The time constant of potassium channel activation was ~0.7 sec and was the same for each agonist. The amplitude of the current and the time constant of decay were dependent on the agonist, suggesting that agonist efficacy and affinity, respectively, determined these parameters. The amplitude of potassium current induced by the α2-adrenoceptor agonist UK14304 was not significantly different from that induced by ME, but the time constant of current activation was half that of ME, and the decline was more rapid. When potassium conductances were blocked with the combination of internal cesium and external barium, opioid and α2 agonists had no effect at potentials more negative than -50 mV and decreased barium currents at potentials between -40 and +20 mV. Both morphine and clonidine caused a small inhibition of barium current. In dorsal root ganglion cells, morphine alone had small and inconsistent effects on the calcium current, but it always competitively antagonized the inhibition caused by [D-Ala2,N-Me-Phe4,Gly-ol5]enkephalin. The results in isolated LC neurons suggest 1) the amplitude and time course of the opioid-induced potassium current depend on agonist efficacy and affinity and 2) the coupling of both μ-opioid and α2-adrenoceptors to calcium channels seems to be more efficient than that to potassium channels.

AB - Opioids have been shown to cause a potent inhibition of neurons in the locus ceruleus (LC) in vivo in brain slices and isolated neurons; however, the kinetics of opioid action have not been described. In this study, we used acutely isolated LC neurons to examine opioid and α2-adrenoceptor action on potassium and calcium currents. [Met]Enkephalin (ME), [D-Ser2,Leu5,Thr6]- enkephalin, etorphine, and [D-Ala2,N-Me-Phe4,Gly-ol5]enkephalin increased potassium conductance, whereas morphine and naloxone were antagonists. The time constant of potassium channel activation was ~0.7 sec and was the same for each agonist. The amplitude of the current and the time constant of decay were dependent on the agonist, suggesting that agonist efficacy and affinity, respectively, determined these parameters. The amplitude of potassium current induced by the α2-adrenoceptor agonist UK14304 was not significantly different from that induced by ME, but the time constant of current activation was half that of ME, and the decline was more rapid. When potassium conductances were blocked with the combination of internal cesium and external barium, opioid and α2 agonists had no effect at potentials more negative than -50 mV and decreased barium currents at potentials between -40 and +20 mV. Both morphine and clonidine caused a small inhibition of barium current. In dorsal root ganglion cells, morphine alone had small and inconsistent effects on the calcium current, but it always competitively antagonized the inhibition caused by [D-Ala2,N-Me-Phe4,Gly-ol5]enkephalin. The results in isolated LC neurons suggest 1) the amplitude and time course of the opioid-induced potassium current depend on agonist efficacy and affinity and 2) the coupling of both μ-opioid and α2-adrenoceptors to calcium channels seems to be more efficient than that to potassium channels.

UR - http://www.scopus.com/inward/record.url?scp=0030797055&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030797055&partnerID=8YFLogxK

M3 - Article

VL - 52

SP - 136

EP - 143

JO - Molecular Pharmacology

JF - Molecular Pharmacology

SN - 0026-895X

IS - 1

ER -