Effect of microbubble ligation to cells on ultrasound signal enhancement: Implications for targeted imaging

Miles Lankford, Carolyn Z. Behm, James Yeh, Alexander L. Klibanov, Peter Robinson, Jonathan R. Lindner

    Research output: Contribution to journalArticlepeer-review

    47 Scopus citations


    OBJECTIVES: Molecular imaging with contrast-enhanced ultrasound (CEU) relies on the detection of microbubbles retained in regions of disease. The aim of this study was to determine whether microbubble attachment to cells influences their acoustic signal generation and stability. MATERIALS AND METHODS: Biotinylated microbubbles were attached to streptavidin-coated plates to derive density versus intensity relations during low- and high-power imaging. To assess damping from microbubble attachment to solid or cell surfaces, in vitro imaging was performed for microbubbles charge-coupled to methacrylate spheres and for vascular cell adhesion molecule-1-targeted microbubbles attached to endothelial cells. RESULTS: Signal enhancement on plates increased according to acoustic power and microbubble site density up to 300 mm. Microbubble signal was reduced by attachment to solid spheres during high- and low-power imaging but was minimally reduced by attachment to endothelial cells and only at low power. CONCLUSION: Attachment of targeted microbubbles to rigid surfaces results in damping and a reduction of their acoustic signal, which is not seen when microbubbles are attached to cells. A reliable concentration versus intensity relationship can be expected from microbubble attachment to 2-dimensional surfaces until a very high site density is reached.

    Original languageEnglish (US)
    Pages (from-to)721-728
    Number of pages8
    JournalInvestigative Radiology
    Issue number10
    StatePublished - Oct 2006


    • Contrast ultrasound
    • Microbubbles
    • Molecular imaging

    ASJC Scopus subject areas

    • Medicine(all)


    Dive into the research topics of 'Effect of microbubble ligation to cells on ultrasound signal enhancement: Implications for targeted imaging'. Together they form a unique fingerprint.

    Cite this