Dynamic and static strength of an implant-supported overdenture model reinforced with metal and nonmetal strengtheners

Rodrigo Nunes Rached, Evelise MacHado De Souza, Scott R. Dyer, Jack Ferracane

Research output: Contribution to journalArticle

17 Citations (Scopus)

Abstract

Fractures of overdentures occur in the denture base through the abutments. The purpose of this study was to evaluate the effect of reinforcements and the space available for their placement on the dynamic and static loading capacity of a simulated implant-supported overdenture model. Rhomboidal (6 × 6 × 25 mm) test specimens (n=8), made with an acrylic resin and containing 2 metal O-ring capsules, were reinforced with braided stainless steel bar (BS), stainless steel mesh (SM), unidirectional E-glass fiber (GF), E-glass mesh (GM), woven polyethylene braids (PE), or polyaramid fibers (PA). Two distinct spaces for reinforcement placement were investigated: a 2.5 mm and a 1 mm space. Control groups consisted of nonreinforced specimens. Specimens were thermocycled (5°C and 55°C, 5,000 cycles) and then subjected to a 100,000 cyclic load regime. Unbroken specimens were then loaded until failure. The number of failures under fatigue (f) and static load (s) were compared with the Chi-Square test, while static load means were compared with the Kruskal-Wallis test (α=.05). The number of failures (f:s) of GF (0:16), PE (0:16), and PA (0:16) differed significantly from the control group (8:8) and SM (4:12) (P=.037 and P=.025, respectively). For the 2.5 mm space group, these same reinforcements also exhibited higher static load means than the control (P=.016, P=.003, and P=.003, respectively); under static load, no significant differences were detected between the reinforced groups and the control for the 1.0 mm space group (P=1.0). E-glass fibers, woven polyethylene braids, and polyaramid fibers withstood the fatigue regime and increased the flexural strength of the implant-supported overdenture model. The spaces available for reinforcement did not affect the dynamic strength or the static loading capacity of the implant-supported overdenture model.

Original languageEnglish (US)
Pages (from-to)297-304
Number of pages8
JournalJournal of Prosthetic Dentistry
Volume106
Issue number5
DOIs
StatePublished - Nov 2011

Fingerprint

Overlay Denture
Polyethylene
Metals
Stainless Steel
Control Groups
Fatigue
Denture Bases
Acrylic Resins
Steel
Chi-Square Distribution
Capsules
Glass
fiberglass

ASJC Scopus subject areas

  • Oral Surgery

Cite this

Dynamic and static strength of an implant-supported overdenture model reinforced with metal and nonmetal strengtheners. / Rached, Rodrigo Nunes; De Souza, Evelise MacHado; Dyer, Scott R.; Ferracane, Jack.

In: Journal of Prosthetic Dentistry, Vol. 106, No. 5, 11.2011, p. 297-304.

Research output: Contribution to journalArticle

Rached, Rodrigo Nunes ; De Souza, Evelise MacHado ; Dyer, Scott R. ; Ferracane, Jack. / Dynamic and static strength of an implant-supported overdenture model reinforced with metal and nonmetal strengtheners. In: Journal of Prosthetic Dentistry. 2011 ; Vol. 106, No. 5. pp. 297-304.
@article{4fe9c1738b834bff872c54f50861027c,
title = "Dynamic and static strength of an implant-supported overdenture model reinforced with metal and nonmetal strengtheners",
abstract = "Fractures of overdentures occur in the denture base through the abutments. The purpose of this study was to evaluate the effect of reinforcements and the space available for their placement on the dynamic and static loading capacity of a simulated implant-supported overdenture model. Rhomboidal (6 × 6 × 25 mm) test specimens (n=8), made with an acrylic resin and containing 2 metal O-ring capsules, were reinforced with braided stainless steel bar (BS), stainless steel mesh (SM), unidirectional E-glass fiber (GF), E-glass mesh (GM), woven polyethylene braids (PE), or polyaramid fibers (PA). Two distinct spaces for reinforcement placement were investigated: a 2.5 mm and a 1 mm space. Control groups consisted of nonreinforced specimens. Specimens were thermocycled (5°C and 55°C, 5,000 cycles) and then subjected to a 100,000 cyclic load regime. Unbroken specimens were then loaded until failure. The number of failures under fatigue (f) and static load (s) were compared with the Chi-Square test, while static load means were compared with the Kruskal-Wallis test (α=.05). The number of failures (f:s) of GF (0:16), PE (0:16), and PA (0:16) differed significantly from the control group (8:8) and SM (4:12) (P=.037 and P=.025, respectively). For the 2.5 mm space group, these same reinforcements also exhibited higher static load means than the control (P=.016, P=.003, and P=.003, respectively); under static load, no significant differences were detected between the reinforced groups and the control for the 1.0 mm space group (P=1.0). E-glass fibers, woven polyethylene braids, and polyaramid fibers withstood the fatigue regime and increased the flexural strength of the implant-supported overdenture model. The spaces available for reinforcement did not affect the dynamic strength or the static loading capacity of the implant-supported overdenture model.",
author = "Rached, {Rodrigo Nunes} and {De Souza}, {Evelise MacHado} and Dyer, {Scott R.} and Jack Ferracane",
year = "2011",
month = "11",
doi = "10.1016/S0022-3913(11)60134-0",
language = "English (US)",
volume = "106",
pages = "297--304",
journal = "Journal of Prosthetic Dentistry",
issn = "0022-3913",
publisher = "Mosby Inc.",
number = "5",

}

TY - JOUR

T1 - Dynamic and static strength of an implant-supported overdenture model reinforced with metal and nonmetal strengtheners

AU - Rached, Rodrigo Nunes

AU - De Souza, Evelise MacHado

AU - Dyer, Scott R.

AU - Ferracane, Jack

PY - 2011/11

Y1 - 2011/11

N2 - Fractures of overdentures occur in the denture base through the abutments. The purpose of this study was to evaluate the effect of reinforcements and the space available for their placement on the dynamic and static loading capacity of a simulated implant-supported overdenture model. Rhomboidal (6 × 6 × 25 mm) test specimens (n=8), made with an acrylic resin and containing 2 metal O-ring capsules, were reinforced with braided stainless steel bar (BS), stainless steel mesh (SM), unidirectional E-glass fiber (GF), E-glass mesh (GM), woven polyethylene braids (PE), or polyaramid fibers (PA). Two distinct spaces for reinforcement placement were investigated: a 2.5 mm and a 1 mm space. Control groups consisted of nonreinforced specimens. Specimens were thermocycled (5°C and 55°C, 5,000 cycles) and then subjected to a 100,000 cyclic load regime. Unbroken specimens were then loaded until failure. The number of failures under fatigue (f) and static load (s) were compared with the Chi-Square test, while static load means were compared with the Kruskal-Wallis test (α=.05). The number of failures (f:s) of GF (0:16), PE (0:16), and PA (0:16) differed significantly from the control group (8:8) and SM (4:12) (P=.037 and P=.025, respectively). For the 2.5 mm space group, these same reinforcements also exhibited higher static load means than the control (P=.016, P=.003, and P=.003, respectively); under static load, no significant differences were detected between the reinforced groups and the control for the 1.0 mm space group (P=1.0). E-glass fibers, woven polyethylene braids, and polyaramid fibers withstood the fatigue regime and increased the flexural strength of the implant-supported overdenture model. The spaces available for reinforcement did not affect the dynamic strength or the static loading capacity of the implant-supported overdenture model.

AB - Fractures of overdentures occur in the denture base through the abutments. The purpose of this study was to evaluate the effect of reinforcements and the space available for their placement on the dynamic and static loading capacity of a simulated implant-supported overdenture model. Rhomboidal (6 × 6 × 25 mm) test specimens (n=8), made with an acrylic resin and containing 2 metal O-ring capsules, were reinforced with braided stainless steel bar (BS), stainless steel mesh (SM), unidirectional E-glass fiber (GF), E-glass mesh (GM), woven polyethylene braids (PE), or polyaramid fibers (PA). Two distinct spaces for reinforcement placement were investigated: a 2.5 mm and a 1 mm space. Control groups consisted of nonreinforced specimens. Specimens were thermocycled (5°C and 55°C, 5,000 cycles) and then subjected to a 100,000 cyclic load regime. Unbroken specimens were then loaded until failure. The number of failures under fatigue (f) and static load (s) were compared with the Chi-Square test, while static load means were compared with the Kruskal-Wallis test (α=.05). The number of failures (f:s) of GF (0:16), PE (0:16), and PA (0:16) differed significantly from the control group (8:8) and SM (4:12) (P=.037 and P=.025, respectively). For the 2.5 mm space group, these same reinforcements also exhibited higher static load means than the control (P=.016, P=.003, and P=.003, respectively); under static load, no significant differences were detected between the reinforced groups and the control for the 1.0 mm space group (P=1.0). E-glass fibers, woven polyethylene braids, and polyaramid fibers withstood the fatigue regime and increased the flexural strength of the implant-supported overdenture model. The spaces available for reinforcement did not affect the dynamic strength or the static loading capacity of the implant-supported overdenture model.

UR - http://www.scopus.com/inward/record.url?scp=80054975083&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=80054975083&partnerID=8YFLogxK

U2 - 10.1016/S0022-3913(11)60134-0

DO - 10.1016/S0022-3913(11)60134-0

M3 - Article

VL - 106

SP - 297

EP - 304

JO - Journal of Prosthetic Dentistry

JF - Journal of Prosthetic Dentistry

SN - 0022-3913

IS - 5

ER -