Abstract
Using the whole-cell patch-clamp technique, Ca2+ channel currents were examined in three distinct types of neurons derived from rat primary visual cortex. Callosal-projecting and superior coil iculus-projecting neurons were identified following in vivo retrograde labeling with fluorescent "beads." A subset of intrinsic GABAergic visual cortical neurons was identified with the monoclonal antibody VC1.1. Although high voltage activated Ca2+ channel currents were measured in all three cell types, clear differences in the densities of these channels were observed. There were also marked variations in the relative amplitudes of the inactivating and noninactivating components of the high voltage-activated currents, suggesting that N- and L-type Ca2+ channels are differentially distributed. Although low voltage activated or T-type currents were measured in subsets of both types of projection neurons, they were not observed in VC1.1-positive cells. These results provide a direct demonstration that voltage-gated Ca2+ channels are expressed in neurons of the mammalian visual cortex and reveal that the distributions and densities of different Ca2+ channel types in diverse classes of visual cortical neurons are distinct.
Original language | English (US) |
---|---|
Pages (from-to) | 321-332 |
Number of pages | 12 |
Journal | Neuron |
Volume | 6 |
Issue number | 3 |
DOIs | |
State | Published - Mar 1991 |
Externally published | Yes |
ASJC Scopus subject areas
- Neuroscience(all)