Development of a tunable wide-range gene induction system useful for the study of streptococcal toxin-antitoxin systems

Zhoujie Xie, Fengxia Qi, Justin Merritt

Research output: Contribution to journalArticlepeer-review

18 Scopus citations


Despite the plethora of genetic tools that have been developed for use in Streptococcus mutans, the S. mutans genetic system still lacks an effective gene induction system exhibiting low basal expression and strong inducibility. Consequently, we created two hybrid gene induction cassettes referred to as Xyl-S1 and Xyl-S2. Both Xyl-S cassettes are xylose inducible and controlled by the Bacillus megaterium xylose repressor. The Xyl-S cassettes each demonstrated <600-fold-increased reporter activity in the presence of 1.2% (wt/vol) xylose. However, the Xyl-S1 cassette yielded a much higher maximum level of gene expression, whereas the Xyl-S2 cassette exhibited much lower uninduced basal expression. The cassettes also performed similarly in Streptococcus sanguinis and Streptococcus gordonii, which suggests that they are likely to be useful in a variety of streptococci. We demonstrate how both Xyl-S cassettes are particularly useful for the study of toxin-antitoxin (TA) modules using both the previously characterized S. mutans mazEF TA module and a previously uncharacterized HicAB TA module in S. mutans. HicAB TA modules are widely distributed among bacteria and archaea, but little is known about their function. We show that HicA serves as the toxin component of the module, while HicB serves as the antitoxin. Our results suggest that, in contrast to that of typical TA modules, HicA toxicity in S. mutans is modest at best. The implications of these results for HicAB function are discussed.

Original languageEnglish (US)
Pages (from-to)6375-6384
Number of pages10
JournalApplied and Environmental Microbiology
Issue number20
StatePublished - 2013
Externally publishedYes

ASJC Scopus subject areas

  • Biotechnology
  • Food Science
  • Applied Microbiology and Biotechnology
  • Ecology


Dive into the research topics of 'Development of a tunable wide-range gene induction system useful for the study of streptococcal toxin-antitoxin systems'. Together they form a unique fingerprint.

Cite this