Development of a fully automated closed loop artificial pancreas control system with dual pump delivery of insulin and glucagon.

Peter Jacobs, Joseph El Youssef, Jessica Castle, Julia M. Engle, Deborah L. Branigan, Phillip Johnson, Ryan Massoud, Apurv Kamath, W. Kenneth Ward

Research output: Contribution to journalArticle

15 Citations (Scopus)

Abstract

Patients with diabetes have difficulty controlling their blood sugar and suffer from acute effects of hypoglycemia and long-term effects of hyperglycemia, which include disease of the eyes, kidneys and nerves/feet. In this paper, we describe a new system that is used to automatically control blood sugar in people with diabetes through the fully automated measurement of blood glucose levels and the delivery of insulin and glucagon via the subcutaneous route. When a patient's blood sugar goes too high, insulin is given to the patient to bring his/her blood sugar back to a normal level. To prevent a patient's blood sugar from going too low, the patient is given a hormone called glucagon which raises the patient's blood sugar. While other groups have described methods for automatically delivering insulin and glucagon, many of these systems still require human interaction to enter the venous blood sugar levels into the control system. This paper describes the development of a fully automated closed-loop dual sensor bi-hormonal artificial pancreas system that does not require human interaction. The system described in this paper is comprised of two sensors for measuring glucose, two pumps for independent delivery of insulin and glucagon, and a laptop computer running a custom software application that controls the sensor acquisition and insulin and glucagon delivery based on the glucose values recorded. Two control algorithms are designed into the software: (1) an algorithm that delivers insulin and glucagon according to their proportional and derivative errors and proportional and derivative gains and (2) an adaptive algorithm that adjusts the gain factors based on the patient's current insulin sensitivity as determined using a mathematical model. Results from this work may ultimately lead to development of a portable, easy to use, artificial pancreas device that can enable far better glycemic control in patients with diabetes.

Fingerprint

Artificial Pancreas
Insulin
Glucagon
Blood Glucose
Sugars
Blood
Pumps
Control systems
Medical problems
Glucose
Sensors
Software
Derivatives
Laptop computers
Eye Diseases
Hormones
Kidney Diseases
Adaptive algorithms
Hypoglycemia
Application programs

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Signal Processing
  • Biomedical Engineering
  • Health Informatics

Cite this

@article{1047096355414dd5a405bfe57555bdf1,
title = "Development of a fully automated closed loop artificial pancreas control system with dual pump delivery of insulin and glucagon.",
abstract = "Patients with diabetes have difficulty controlling their blood sugar and suffer from acute effects of hypoglycemia and long-term effects of hyperglycemia, which include disease of the eyes, kidneys and nerves/feet. In this paper, we describe a new system that is used to automatically control blood sugar in people with diabetes through the fully automated measurement of blood glucose levels and the delivery of insulin and glucagon via the subcutaneous route. When a patient's blood sugar goes too high, insulin is given to the patient to bring his/her blood sugar back to a normal level. To prevent a patient's blood sugar from going too low, the patient is given a hormone called glucagon which raises the patient's blood sugar. While other groups have described methods for automatically delivering insulin and glucagon, many of these systems still require human interaction to enter the venous blood sugar levels into the control system. This paper describes the development of a fully automated closed-loop dual sensor bi-hormonal artificial pancreas system that does not require human interaction. The system described in this paper is comprised of two sensors for measuring glucose, two pumps for independent delivery of insulin and glucagon, and a laptop computer running a custom software application that controls the sensor acquisition and insulin and glucagon delivery based on the glucose values recorded. Two control algorithms are designed into the software: (1) an algorithm that delivers insulin and glucagon according to their proportional and derivative errors and proportional and derivative gains and (2) an adaptive algorithm that adjusts the gain factors based on the patient's current insulin sensitivity as determined using a mathematical model. Results from this work may ultimately lead to development of a portable, easy to use, artificial pancreas device that can enable far better glycemic control in patients with diabetes.",
author = "Peter Jacobs and {El Youssef}, Joseph and Jessica Castle and Engle, {Julia M.} and Branigan, {Deborah L.} and Phillip Johnson and Ryan Massoud and Apurv Kamath and Ward, {W. Kenneth}",
year = "2011",
language = "English (US)",
volume = "2011",
pages = "397--400",
journal = "Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference",
issn = "1557-170X",
publisher = "Institute of Electrical and Electronics Engineers Inc.",

}

TY - JOUR

T1 - Development of a fully automated closed loop artificial pancreas control system with dual pump delivery of insulin and glucagon.

AU - Jacobs, Peter

AU - El Youssef, Joseph

AU - Castle, Jessica

AU - Engle, Julia M.

AU - Branigan, Deborah L.

AU - Johnson, Phillip

AU - Massoud, Ryan

AU - Kamath, Apurv

AU - Ward, W. Kenneth

PY - 2011

Y1 - 2011

N2 - Patients with diabetes have difficulty controlling their blood sugar and suffer from acute effects of hypoglycemia and long-term effects of hyperglycemia, which include disease of the eyes, kidneys and nerves/feet. In this paper, we describe a new system that is used to automatically control blood sugar in people with diabetes through the fully automated measurement of blood glucose levels and the delivery of insulin and glucagon via the subcutaneous route. When a patient's blood sugar goes too high, insulin is given to the patient to bring his/her blood sugar back to a normal level. To prevent a patient's blood sugar from going too low, the patient is given a hormone called glucagon which raises the patient's blood sugar. While other groups have described methods for automatically delivering insulin and glucagon, many of these systems still require human interaction to enter the venous blood sugar levels into the control system. This paper describes the development of a fully automated closed-loop dual sensor bi-hormonal artificial pancreas system that does not require human interaction. The system described in this paper is comprised of two sensors for measuring glucose, two pumps for independent delivery of insulin and glucagon, and a laptop computer running a custom software application that controls the sensor acquisition and insulin and glucagon delivery based on the glucose values recorded. Two control algorithms are designed into the software: (1) an algorithm that delivers insulin and glucagon according to their proportional and derivative errors and proportional and derivative gains and (2) an adaptive algorithm that adjusts the gain factors based on the patient's current insulin sensitivity as determined using a mathematical model. Results from this work may ultimately lead to development of a portable, easy to use, artificial pancreas device that can enable far better glycemic control in patients with diabetes.

AB - Patients with diabetes have difficulty controlling their blood sugar and suffer from acute effects of hypoglycemia and long-term effects of hyperglycemia, which include disease of the eyes, kidneys and nerves/feet. In this paper, we describe a new system that is used to automatically control blood sugar in people with diabetes through the fully automated measurement of blood glucose levels and the delivery of insulin and glucagon via the subcutaneous route. When a patient's blood sugar goes too high, insulin is given to the patient to bring his/her blood sugar back to a normal level. To prevent a patient's blood sugar from going too low, the patient is given a hormone called glucagon which raises the patient's blood sugar. While other groups have described methods for automatically delivering insulin and glucagon, many of these systems still require human interaction to enter the venous blood sugar levels into the control system. This paper describes the development of a fully automated closed-loop dual sensor bi-hormonal artificial pancreas system that does not require human interaction. The system described in this paper is comprised of two sensors for measuring glucose, two pumps for independent delivery of insulin and glucagon, and a laptop computer running a custom software application that controls the sensor acquisition and insulin and glucagon delivery based on the glucose values recorded. Two control algorithms are designed into the software: (1) an algorithm that delivers insulin and glucagon according to their proportional and derivative errors and proportional and derivative gains and (2) an adaptive algorithm that adjusts the gain factors based on the patient's current insulin sensitivity as determined using a mathematical model. Results from this work may ultimately lead to development of a portable, easy to use, artificial pancreas device that can enable far better glycemic control in patients with diabetes.

UR - http://www.scopus.com/inward/record.url?scp=84861935134&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84861935134&partnerID=8YFLogxK

M3 - Article

C2 - 22254332

AN - SCOPUS:84861935134

VL - 2011

SP - 397

EP - 400

JO - Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference

JF - Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference

SN - 1557-170X

ER -