Development of 2-(5,6,7-Trifluoro-1 H-Indol-3-yl)-quinoline-5-carboxamide as a Potent, Selective, and Orally Available Inhibitor of Human Androgen Receptor Targeting Its Binding Function-3 for the Treatment of Castration-Resistant Prostate Cancer

Eric Leblanc, Fuqiang Ban, Ayse Derya Cavga, Sam Lawn, Chia Chi Flora Huang, Sankar Mohan, Matthew E.K. Chang, Mark R. Flory, Fariba Ghaidi, Shreyas Lingadahalli, Gang Chen, Ivan Pak Lok Yu, Hélène Morin, Nada Lallous, Martin E. Gleave, Hisham Mohammed, Robert N. Young, Paul S. Rennie, Nathan A. Lack, Artem Cherkasov

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Prostate cancer (PCa) patients undergoing androgen deprivation therapy almost invariably develop castration-resistant prostate cancer (CRPC). Targeting the androgen receptor (AR) Binding Function-3 (BF3) site offers a promising option to treat CRPC. However, BF3 inhibitors have been limited by poor potency or inadequate metabolic stability. Through extensive medicinal chemistry, molecular modeling, and biochemistry, we identified 2-(5,6,7-trifluoro-1H-Indol-3-yl)-quinoline-5-carboxamide (VPC-13789), a potent AR BF3 antagonist with markedly improved pharmacokinetic properties. We demonstrate that VPC-13789 suppresses AR-mediated transcription, chromatin binding, and recruitment of coregulatory proteins. This novel AR antagonist selectively reduces the growth of both androgen-dependent and enzalutamide-resistant PCa cell lines. Having demonstrated in vitro efficacy, we developed an orally bioavailable prodrug that reduced PSA production and tumor volume in animal models of CRPC with no observed toxicity. VPC-13789 is a potent, selective, and orally bioavailable antiandrogen with a distinct mode of action that has a potential as novel CRPC therapeutics.

Original languageEnglish (US)
Pages (from-to)14968-14982
Number of pages15
JournalJournal of Medicinal Chemistry
Volume64
Issue number20
DOIs
StatePublished - Oct 28 2021

ASJC Scopus subject areas

  • Molecular Medicine
  • Drug Discovery

Fingerprint

Dive into the research topics of 'Development of 2-(5,6,7-Trifluoro-1 H-Indol-3-yl)-quinoline-5-carboxamide as a Potent, Selective, and Orally Available Inhibitor of Human Androgen Receptor Targeting Its Binding Function-3 for the Treatment of Castration-Resistant Prostate Cancer'. Together they form a unique fingerprint.

Cite this