Development and validation of safety climate scales for mobile remote workers using utility/electrical workers as exemplar

Yueng-hsiang Huang, Dov Zohar, Michelle M. Robertson, Angela Garabet, Lauren A. Murphy, Jin Lee

Research output: Contribution to journalArticle

28 Citations (Scopus)

Abstract

Purpose The objective of this study was to develop and test the reliability and validity of a new scale designed for measuring safety climate among mobile remote workers, using utility/electrical workers as exemplar. The new scale employs perceived safety priority as the metric of safety climate and a multi-level framework, separating the measurement of organization- and group-level safety climate items into two sub-scales. The question of the emergence of shared perceptions among remote workers was also examined. Method For the initial survey development, several items were adopted from a generic safety climate scale and new industry-specific items were generated based on an extensive literature review, expert judgment, 15-day field observations, and 38 in-depth individual interviews with subject matter experts (i.e., utility industry electrical workers, trainers and supervisors of electrical workers). The items were revised after 45 cognitive interviews and a pre-test with 139 additional utility/electrical workers. The revised scale was subsequently implemented with a total of 2421 workers at two large US electric utility companies (1560 participants for the pilot company and 861 for the second company). Both exploratory (EFA) and confirmatory factor analyses (CFA) were adopted to finalize the items and to ensure construct validity. Reliability of the scale was tested based on Cronbach's α. Homogeneity tests examined whether utility/electrical workers' safety climate perceptions were shared within the same supervisor group. This was followed by an analysis of the criterion-related validity, which linked the safety climate scores to self-reports of safety behavior and injury outcomes (i.e., recordable incidents, missing days due to work-related injuries, vehicle accidents, and near misses). Results Six dimensions (Safety pro-activity, General training, Trucks and equipment, Field orientation, Financial Investment, and Schedule flexibility) with 29 items were extracted from the EFA to measure the organization-level safety climate. Three dimensions (Supervisory care, Participation encouragement, and Safety straight talk) with 19 items were extracted to measure the group-level safety climate. Acceptable ranges of internal consistency statistics for the sub-scales were observed. Whether or not to aggregate these multi-dimensions of safety climate into a single higher-order construct (overall safety climate) was discussed. CFAs confirmed the construct validity of the developed safety climate scale for utility/electrical workers. Homogeneity tests showed that utility/electrical workers' safety climate perceptions were shared within the same supervisor group. Both the organization- and group-level safety climate scores showed a statistically significant relationship with workers' self-reported safety behaviors and injury outcomes. Implications A valid and reliable instrument to measure the essential elements of safety climate for utility/electrical workers in the remote working situation has been introduced. The scale can provide an in-depth understanding of safety climate based on its key dimensions and show where improvements can be made at both group and organization levels. As such, it may also offer a valuable starting point for future safety interventions.

Original languageEnglish (US)
Pages (from-to)76-86
Number of pages11
JournalAccident Analysis and Prevention
Volume59
DOIs
StatePublished - Jun 19 2013
Externally publishedYes

Fingerprint

Climate
climate
Safety
worker
organization
Supervisory personnel
Group
construct validity
Organizations
electrical industry
Industry
expert
financial investment
Wounds and Injuries
interview
Interviews
incident
accident
Electric utilities
flexibility

Keywords

  • Electric power industry
  • Safety climate for remote workers
  • Scale development and validation
  • Utility electrical workers

ASJC Scopus subject areas

  • Human Factors and Ergonomics
  • Safety, Risk, Reliability and Quality
  • Public Health, Environmental and Occupational Health
  • Law

Cite this

Development and validation of safety climate scales for mobile remote workers using utility/electrical workers as exemplar. / Huang, Yueng-hsiang; Zohar, Dov; Robertson, Michelle M.; Garabet, Angela; Murphy, Lauren A.; Lee, Jin.

In: Accident Analysis and Prevention, Vol. 59, 19.06.2013, p. 76-86.

Research output: Contribution to journalArticle

Huang, Yueng-hsiang ; Zohar, Dov ; Robertson, Michelle M. ; Garabet, Angela ; Murphy, Lauren A. ; Lee, Jin. / Development and validation of safety climate scales for mobile remote workers using utility/electrical workers as exemplar. In: Accident Analysis and Prevention. 2013 ; Vol. 59. pp. 76-86.
@article{b689b4534806402a893e0fd78f764c29,
title = "Development and validation of safety climate scales for mobile remote workers using utility/electrical workers as exemplar",
abstract = "Purpose The objective of this study was to develop and test the reliability and validity of a new scale designed for measuring safety climate among mobile remote workers, using utility/electrical workers as exemplar. The new scale employs perceived safety priority as the metric of safety climate and a multi-level framework, separating the measurement of organization- and group-level safety climate items into two sub-scales. The question of the emergence of shared perceptions among remote workers was also examined. Method For the initial survey development, several items were adopted from a generic safety climate scale and new industry-specific items were generated based on an extensive literature review, expert judgment, 15-day field observations, and 38 in-depth individual interviews with subject matter experts (i.e., utility industry electrical workers, trainers and supervisors of electrical workers). The items were revised after 45 cognitive interviews and a pre-test with 139 additional utility/electrical workers. The revised scale was subsequently implemented with a total of 2421 workers at two large US electric utility companies (1560 participants for the pilot company and 861 for the second company). Both exploratory (EFA) and confirmatory factor analyses (CFA) were adopted to finalize the items and to ensure construct validity. Reliability of the scale was tested based on Cronbach's α. Homogeneity tests examined whether utility/electrical workers' safety climate perceptions were shared within the same supervisor group. This was followed by an analysis of the criterion-related validity, which linked the safety climate scores to self-reports of safety behavior and injury outcomes (i.e., recordable incidents, missing days due to work-related injuries, vehicle accidents, and near misses). Results Six dimensions (Safety pro-activity, General training, Trucks and equipment, Field orientation, Financial Investment, and Schedule flexibility) with 29 items were extracted from the EFA to measure the organization-level safety climate. Three dimensions (Supervisory care, Participation encouragement, and Safety straight talk) with 19 items were extracted to measure the group-level safety climate. Acceptable ranges of internal consistency statistics for the sub-scales were observed. Whether or not to aggregate these multi-dimensions of safety climate into a single higher-order construct (overall safety climate) was discussed. CFAs confirmed the construct validity of the developed safety climate scale for utility/electrical workers. Homogeneity tests showed that utility/electrical workers' safety climate perceptions were shared within the same supervisor group. Both the organization- and group-level safety climate scores showed a statistically significant relationship with workers' self-reported safety behaviors and injury outcomes. Implications A valid and reliable instrument to measure the essential elements of safety climate for utility/electrical workers in the remote working situation has been introduced. The scale can provide an in-depth understanding of safety climate based on its key dimensions and show where improvements can be made at both group and organization levels. As such, it may also offer a valuable starting point for future safety interventions.",
keywords = "Electric power industry, Safety climate for remote workers, Scale development and validation, Utility electrical workers",
author = "Yueng-hsiang Huang and Dov Zohar and Robertson, {Michelle M.} and Angela Garabet and Murphy, {Lauren A.} and Jin Lee",
year = "2013",
month = "6",
day = "19",
doi = "10.1016/j.aap.2013.04.030",
language = "English (US)",
volume = "59",
pages = "76--86",
journal = "Accident Analysis and Prevention",
issn = "0001-4575",
publisher = "Elsevier Limited",

}

TY - JOUR

T1 - Development and validation of safety climate scales for mobile remote workers using utility/electrical workers as exemplar

AU - Huang, Yueng-hsiang

AU - Zohar, Dov

AU - Robertson, Michelle M.

AU - Garabet, Angela

AU - Murphy, Lauren A.

AU - Lee, Jin

PY - 2013/6/19

Y1 - 2013/6/19

N2 - Purpose The objective of this study was to develop and test the reliability and validity of a new scale designed for measuring safety climate among mobile remote workers, using utility/electrical workers as exemplar. The new scale employs perceived safety priority as the metric of safety climate and a multi-level framework, separating the measurement of organization- and group-level safety climate items into two sub-scales. The question of the emergence of shared perceptions among remote workers was also examined. Method For the initial survey development, several items were adopted from a generic safety climate scale and new industry-specific items were generated based on an extensive literature review, expert judgment, 15-day field observations, and 38 in-depth individual interviews with subject matter experts (i.e., utility industry electrical workers, trainers and supervisors of electrical workers). The items were revised after 45 cognitive interviews and a pre-test with 139 additional utility/electrical workers. The revised scale was subsequently implemented with a total of 2421 workers at two large US electric utility companies (1560 participants for the pilot company and 861 for the second company). Both exploratory (EFA) and confirmatory factor analyses (CFA) were adopted to finalize the items and to ensure construct validity. Reliability of the scale was tested based on Cronbach's α. Homogeneity tests examined whether utility/electrical workers' safety climate perceptions were shared within the same supervisor group. This was followed by an analysis of the criterion-related validity, which linked the safety climate scores to self-reports of safety behavior and injury outcomes (i.e., recordable incidents, missing days due to work-related injuries, vehicle accidents, and near misses). Results Six dimensions (Safety pro-activity, General training, Trucks and equipment, Field orientation, Financial Investment, and Schedule flexibility) with 29 items were extracted from the EFA to measure the organization-level safety climate. Three dimensions (Supervisory care, Participation encouragement, and Safety straight talk) with 19 items were extracted to measure the group-level safety climate. Acceptable ranges of internal consistency statistics for the sub-scales were observed. Whether or not to aggregate these multi-dimensions of safety climate into a single higher-order construct (overall safety climate) was discussed. CFAs confirmed the construct validity of the developed safety climate scale for utility/electrical workers. Homogeneity tests showed that utility/electrical workers' safety climate perceptions were shared within the same supervisor group. Both the organization- and group-level safety climate scores showed a statistically significant relationship with workers' self-reported safety behaviors and injury outcomes. Implications A valid and reliable instrument to measure the essential elements of safety climate for utility/electrical workers in the remote working situation has been introduced. The scale can provide an in-depth understanding of safety climate based on its key dimensions and show where improvements can be made at both group and organization levels. As such, it may also offer a valuable starting point for future safety interventions.

AB - Purpose The objective of this study was to develop and test the reliability and validity of a new scale designed for measuring safety climate among mobile remote workers, using utility/electrical workers as exemplar. The new scale employs perceived safety priority as the metric of safety climate and a multi-level framework, separating the measurement of organization- and group-level safety climate items into two sub-scales. The question of the emergence of shared perceptions among remote workers was also examined. Method For the initial survey development, several items were adopted from a generic safety climate scale and new industry-specific items were generated based on an extensive literature review, expert judgment, 15-day field observations, and 38 in-depth individual interviews with subject matter experts (i.e., utility industry electrical workers, trainers and supervisors of electrical workers). The items were revised after 45 cognitive interviews and a pre-test with 139 additional utility/electrical workers. The revised scale was subsequently implemented with a total of 2421 workers at two large US electric utility companies (1560 participants for the pilot company and 861 for the second company). Both exploratory (EFA) and confirmatory factor analyses (CFA) were adopted to finalize the items and to ensure construct validity. Reliability of the scale was tested based on Cronbach's α. Homogeneity tests examined whether utility/electrical workers' safety climate perceptions were shared within the same supervisor group. This was followed by an analysis of the criterion-related validity, which linked the safety climate scores to self-reports of safety behavior and injury outcomes (i.e., recordable incidents, missing days due to work-related injuries, vehicle accidents, and near misses). Results Six dimensions (Safety pro-activity, General training, Trucks and equipment, Field orientation, Financial Investment, and Schedule flexibility) with 29 items were extracted from the EFA to measure the organization-level safety climate. Three dimensions (Supervisory care, Participation encouragement, and Safety straight talk) with 19 items were extracted to measure the group-level safety climate. Acceptable ranges of internal consistency statistics for the sub-scales were observed. Whether or not to aggregate these multi-dimensions of safety climate into a single higher-order construct (overall safety climate) was discussed. CFAs confirmed the construct validity of the developed safety climate scale for utility/electrical workers. Homogeneity tests showed that utility/electrical workers' safety climate perceptions were shared within the same supervisor group. Both the organization- and group-level safety climate scores showed a statistically significant relationship with workers' self-reported safety behaviors and injury outcomes. Implications A valid and reliable instrument to measure the essential elements of safety climate for utility/electrical workers in the remote working situation has been introduced. The scale can provide an in-depth understanding of safety climate based on its key dimensions and show where improvements can be made at both group and organization levels. As such, it may also offer a valuable starting point for future safety interventions.

KW - Electric power industry

KW - Safety climate for remote workers

KW - Scale development and validation

KW - Utility electrical workers

UR - http://www.scopus.com/inward/record.url?scp=84878961644&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84878961644&partnerID=8YFLogxK

U2 - 10.1016/j.aap.2013.04.030

DO - 10.1016/j.aap.2013.04.030

M3 - Article

C2 - 23764880

AN - SCOPUS:84878961644

VL - 59

SP - 76

EP - 86

JO - Accident Analysis and Prevention

JF - Accident Analysis and Prevention

SN - 0001-4575

ER -