Detraining reverses positive effects of exercise on the musculoskeletal system in premenopausal women

Research output: Contribution to journalArticle

118 Citations (Scopus)

Abstract

We studied the effects of a 6-month withdrawal of exercise after 12 months of progressive impact (jump) plus lower body resistance training on risk factors for hip fracture in premenopausal women (age, 30-45 years). Twenty-nine women completed the 12-month training and detraining programs and were compared with 22 matched controls. Bone mineral density (BMD) at the greater trochanter, femoral neck, lumbar spine, and whole body and body composition (% body fat) were measured by dual energy X-ray absorptiometry (DXA; Hologic QDR-1000/W). Knee extensor and hip abductor strength were assessed via isokinetic dynamometry (Kin-Com 500H); maximum leg power was tested using a Wingate Anaerobic Power test; and dynamic postural stability was measured on a stabilimeter (Biodex). All measurements were conducted at baseline, 12 months and 18 months with an additional midtraining measurement of BMD. Exercisers trained three times per week in a program of 100 jumps and 100 repetitions of resistance exercises at each session. Intensity was increased using weighted vests to final values of 10% and 13% of body weight (BW) for jump and resistance exercises, respectively. Differences between groups from training were analyzed by repeated measures analysis of covariance (ANCOVA), adjusted for baseline values. Detraining effects were analyzed by comparing the changes from training with the changes from detraining using repeated measures analysis of variance (ANOVA). Baseline values were not significantly different between exercisers and controls. Percent change over the training period was significantly greater in the exercise group than in the control group at the greater trochanter (2.7 ± 2.5% vs. 0.8 ± 0.8%, respectively; p <0.01) and approached significance at the femoral neck (1.2 ± 3.2% vs. -0.3 ± 1.9%, respectively; p = 0.06). Significant improvements also were observed in exercisers versus controls for strength and power with exercisers increasing 13-15% above controls, whereas stability was not different between groups. After 6 months of detraining, BMD and muscle strength and power decreased significantly toward baseline values, whereas control values did not change. We conclude that the positive benefits of impact plus resistance training on the musculoskeletal system in premenopausal women reverse when training is withdrawn. Therefore, continued training, perhaps at a reduced frequency and intensity, is required to maintain the musculoskeletal benefit from exercise that may lower fracture risk in later life.

Original languageEnglish (US)
Pages (from-to)2495-2503
Number of pages9
JournalJournal of Bone and Mineral Research
Volume15
Issue number12
StatePublished - 2000
Externally publishedYes

Fingerprint

Musculoskeletal System
Exercise
Bone Density
Resistance Training
Femur Neck
Femur
Photon Absorptiometry
Hip Fractures
Muscle Strength
Body Composition
Adipose Tissue
Hip
Leg
Knee
Analysis of Variance
Spine
Body Weight
Education
Control Groups

Keywords

  • Bone mineral density
  • Impact
  • Osteoporosis
  • Resistance training

ASJC Scopus subject areas

  • Surgery

Cite this

Detraining reverses positive effects of exercise on the musculoskeletal system in premenopausal women. / Winters-Stone, Kerri; Snow, C. M.

In: Journal of Bone and Mineral Research, Vol. 15, No. 12, 2000, p. 2495-2503.

Research output: Contribution to journalArticle

@article{26200d20455d446a88ecf6b552174142,
title = "Detraining reverses positive effects of exercise on the musculoskeletal system in premenopausal women",
abstract = "We studied the effects of a 6-month withdrawal of exercise after 12 months of progressive impact (jump) plus lower body resistance training on risk factors for hip fracture in premenopausal women (age, 30-45 years). Twenty-nine women completed the 12-month training and detraining programs and were compared with 22 matched controls. Bone mineral density (BMD) at the greater trochanter, femoral neck, lumbar spine, and whole body and body composition ({\%} body fat) were measured by dual energy X-ray absorptiometry (DXA; Hologic QDR-1000/W). Knee extensor and hip abductor strength were assessed via isokinetic dynamometry (Kin-Com 500H); maximum leg power was tested using a Wingate Anaerobic Power test; and dynamic postural stability was measured on a stabilimeter (Biodex). All measurements were conducted at baseline, 12 months and 18 months with an additional midtraining measurement of BMD. Exercisers trained three times per week in a program of 100 jumps and 100 repetitions of resistance exercises at each session. Intensity was increased using weighted vests to final values of 10{\%} and 13{\%} of body weight (BW) for jump and resistance exercises, respectively. Differences between groups from training were analyzed by repeated measures analysis of covariance (ANCOVA), adjusted for baseline values. Detraining effects were analyzed by comparing the changes from training with the changes from detraining using repeated measures analysis of variance (ANOVA). Baseline values were not significantly different between exercisers and controls. Percent change over the training period was significantly greater in the exercise group than in the control group at the greater trochanter (2.7 ± 2.5{\%} vs. 0.8 ± 0.8{\%}, respectively; p <0.01) and approached significance at the femoral neck (1.2 ± 3.2{\%} vs. -0.3 ± 1.9{\%}, respectively; p = 0.06). Significant improvements also were observed in exercisers versus controls for strength and power with exercisers increasing 13-15{\%} above controls, whereas stability was not different between groups. After 6 months of detraining, BMD and muscle strength and power decreased significantly toward baseline values, whereas control values did not change. We conclude that the positive benefits of impact plus resistance training on the musculoskeletal system in premenopausal women reverse when training is withdrawn. Therefore, continued training, perhaps at a reduced frequency and intensity, is required to maintain the musculoskeletal benefit from exercise that may lower fracture risk in later life.",
keywords = "Bone mineral density, Impact, Osteoporosis, Resistance training",
author = "Kerri Winters-Stone and Snow, {C. M.}",
year = "2000",
language = "English (US)",
volume = "15",
pages = "2495--2503",
journal = "Journal of Bone and Mineral Research",
issn = "0884-0431",
publisher = "Wiley-Blackwell",
number = "12",

}

TY - JOUR

T1 - Detraining reverses positive effects of exercise on the musculoskeletal system in premenopausal women

AU - Winters-Stone, Kerri

AU - Snow, C. M.

PY - 2000

Y1 - 2000

N2 - We studied the effects of a 6-month withdrawal of exercise after 12 months of progressive impact (jump) plus lower body resistance training on risk factors for hip fracture in premenopausal women (age, 30-45 years). Twenty-nine women completed the 12-month training and detraining programs and were compared with 22 matched controls. Bone mineral density (BMD) at the greater trochanter, femoral neck, lumbar spine, and whole body and body composition (% body fat) were measured by dual energy X-ray absorptiometry (DXA; Hologic QDR-1000/W). Knee extensor and hip abductor strength were assessed via isokinetic dynamometry (Kin-Com 500H); maximum leg power was tested using a Wingate Anaerobic Power test; and dynamic postural stability was measured on a stabilimeter (Biodex). All measurements were conducted at baseline, 12 months and 18 months with an additional midtraining measurement of BMD. Exercisers trained three times per week in a program of 100 jumps and 100 repetitions of resistance exercises at each session. Intensity was increased using weighted vests to final values of 10% and 13% of body weight (BW) for jump and resistance exercises, respectively. Differences between groups from training were analyzed by repeated measures analysis of covariance (ANCOVA), adjusted for baseline values. Detraining effects were analyzed by comparing the changes from training with the changes from detraining using repeated measures analysis of variance (ANOVA). Baseline values were not significantly different between exercisers and controls. Percent change over the training period was significantly greater in the exercise group than in the control group at the greater trochanter (2.7 ± 2.5% vs. 0.8 ± 0.8%, respectively; p <0.01) and approached significance at the femoral neck (1.2 ± 3.2% vs. -0.3 ± 1.9%, respectively; p = 0.06). Significant improvements also were observed in exercisers versus controls for strength and power with exercisers increasing 13-15% above controls, whereas stability was not different between groups. After 6 months of detraining, BMD and muscle strength and power decreased significantly toward baseline values, whereas control values did not change. We conclude that the positive benefits of impact plus resistance training on the musculoskeletal system in premenopausal women reverse when training is withdrawn. Therefore, continued training, perhaps at a reduced frequency and intensity, is required to maintain the musculoskeletal benefit from exercise that may lower fracture risk in later life.

AB - We studied the effects of a 6-month withdrawal of exercise after 12 months of progressive impact (jump) plus lower body resistance training on risk factors for hip fracture in premenopausal women (age, 30-45 years). Twenty-nine women completed the 12-month training and detraining programs and were compared with 22 matched controls. Bone mineral density (BMD) at the greater trochanter, femoral neck, lumbar spine, and whole body and body composition (% body fat) were measured by dual energy X-ray absorptiometry (DXA; Hologic QDR-1000/W). Knee extensor and hip abductor strength were assessed via isokinetic dynamometry (Kin-Com 500H); maximum leg power was tested using a Wingate Anaerobic Power test; and dynamic postural stability was measured on a stabilimeter (Biodex). All measurements were conducted at baseline, 12 months and 18 months with an additional midtraining measurement of BMD. Exercisers trained three times per week in a program of 100 jumps and 100 repetitions of resistance exercises at each session. Intensity was increased using weighted vests to final values of 10% and 13% of body weight (BW) for jump and resistance exercises, respectively. Differences between groups from training were analyzed by repeated measures analysis of covariance (ANCOVA), adjusted for baseline values. Detraining effects were analyzed by comparing the changes from training with the changes from detraining using repeated measures analysis of variance (ANOVA). Baseline values were not significantly different between exercisers and controls. Percent change over the training period was significantly greater in the exercise group than in the control group at the greater trochanter (2.7 ± 2.5% vs. 0.8 ± 0.8%, respectively; p <0.01) and approached significance at the femoral neck (1.2 ± 3.2% vs. -0.3 ± 1.9%, respectively; p = 0.06). Significant improvements also were observed in exercisers versus controls for strength and power with exercisers increasing 13-15% above controls, whereas stability was not different between groups. After 6 months of detraining, BMD and muscle strength and power decreased significantly toward baseline values, whereas control values did not change. We conclude that the positive benefits of impact plus resistance training on the musculoskeletal system in premenopausal women reverse when training is withdrawn. Therefore, continued training, perhaps at a reduced frequency and intensity, is required to maintain the musculoskeletal benefit from exercise that may lower fracture risk in later life.

KW - Bone mineral density

KW - Impact

KW - Osteoporosis

KW - Resistance training

UR - http://www.scopus.com/inward/record.url?scp=0033711638&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033711638&partnerID=8YFLogxK

M3 - Article

VL - 15

SP - 2495

EP - 2503

JO - Journal of Bone and Mineral Research

JF - Journal of Bone and Mineral Research

SN - 0884-0431

IS - 12

ER -