Detection and quantification of myocardial fibrosis using stain-free infrared spectroscopic imaging

Eric Zimmermann, Sudipta S. Mukherjee, Kianoush Falahkheirkhah, Mark C. Gryka, Andre Kajdacsy-Balla, Wohaib Hasan, George Giraud, Fred Tibayan, Jai Raman, Rohit Bhargava

    Research output: Contribution to journalArticlepeer-review

    1 Scopus citations

    Abstract

    Context.-Myocardial fibrosis underpins a number of cardiovascular conditions and is difficult to identify with standard histologic techniques. Challenges include imaging, defining an objective threshold for classifying fibrosis as mild or severe, and understanding the molecular basis for these changes. Objective.-To develop a novel, rapid, label-free approach to accurately measure and quantify the extent of fibrosis in cardiac tissue using infrared spectroscopic imaging. Design.-We performed infrared spectroscopic imaging and combined that with advanced machine learning-based algorithms to assess fibrosis in 15 samples from patients belonging to the following 3 classes: (1) patients with nonpathologic (control) donor hearts, (2) patients undergoing transplant, and (3) patients undergoing implantation of a ventricular assist device. Results.-Our results show excellent sensitivity and accuracy for detecting myocardial fibrosis, as demonstrated by a high area under the curve of 0.998 in the receiver operating characteristic curve measured from infrared imaging. Fibrosis of various morphologic subtypes were demonstrated with virtually generated picrosirius red images, which showed good visual and quantitative agreement (correlation coefficient = 0.92, q = 7.76 3 10_15) with stained images of the same sections. Underlying molecular composition of the different subtypes was investigated with infrared spectra showing reproducible differences presumably arising from differences in collagen subtypes and/or crosslinking. Conclusions.-Infrared imaging can be a powerful tool in studying myocardial fibrosis and gleaning insights into the underlying chemical changes that accompany it. Emerging methods suggest that the proposed approach is compatible with conventional optical microscopy, and its consistency makes it translatable to the clinical setting for real-time diagnoses as well as for objective and quantitative research.

    Original languageEnglish (US)
    Pages (from-to)1526-1535
    Number of pages10
    JournalArchives of Pathology and Laboratory Medicine
    Volume145
    Issue number12
    DOIs
    StatePublished - Dec 2021

    ASJC Scopus subject areas

    • Pathology and Forensic Medicine
    • Medical Laboratory Technology

    Fingerprint

    Dive into the research topics of 'Detection and quantification of myocardial fibrosis using stain-free infrared spectroscopic imaging'. Together they form a unique fingerprint.

    Cite this